Main Article Content

Abstract

The aim of this research is to find the optimal condition for  Zn(II) complexation with protoporphyrin IX which is a natural coloring pigment on quail eggshell. The concentration of protoporphyrin IX extract is  0.01% (w / w) of the dried extract. The results of the complex are analyzed using Response Surface Methodology (RSM). The design used was central composite design with 3 factor variables X1 = pH (2; 4; 6), X2 = ratios (1: 3,1: 4,1: 5) and X3 = time (30 ', 60', 90 '). The modeling used is linear and shows that the pH, ratio, and time factor have an influence on the complexation. This model gives the absorbance equation Y = 2.12506 - 0.049856X1 - 020316X2 - 0,00409857X3 and gives treatment in the most optimum complexation of pH 2; ratio of 1: 3; and time for 30 minutes with the absorbance of 1,293 and the desirability value of 0.825.

Keywords

Optimization protoporphyrin IX quail eggshell

Article Details

How to Cite
Laksono, A. R. A., Martono, Y., & Riyanto, C. A. (2018). Protoporphyrin IX Extraction from Quail Eggshell (Cortunix cortunix) and Its Complexity with Zn(II). EKSAKTA: Journal of Sciences and Data Analysis, 18(2), 155–166. https://doi.org/10.20885/eksakta.vol18.iss2.art7

References

  1. Atkins, P. et al. (2009) Inorganic Chemistry. 5th edn. New York: W H Freeman and Company. Available at: http://infoscience.epfl.ch/record/25583.
  2. Divittorio, K. M. et al. (2008) ‘Zinc ( II ) Coordination Complexes as Membrane-Active Fluorescent Probes and Antibiotics’, ChemBioChem, 85287(II), pp. 286–293. doi: 10.1002/cbic.200700489.
  3. Eiro, M. J. and Heinonen, M. (2002) ‘Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation’, Journal of Agricultural and Food Chemistry, 50(25), pp. 7461–7466. doi: 10.1021/jf0258306.
  4. Fagadar-Cosma, E. et al. (2014) ‘A Sensitive A3B Porphyrin Nanomaterial for CO2 Detection’, Molecules, 19(12), pp. 21239–21252. doi: 10.3390/molecules191221239.
  5. Failisnur and Sofyan (2014) ‘Sifat Tahan Luntur dan Intensitas Warna Kain Sutera dengan Pewarna Alam Gambir (Uncaria gambir Roxb) pada Kondisi Pencelupan dan Jenis Fiksator yang Berbeda’, Jurnal Litbang Industri, 4(1), pp. 1–8. doi: 10.24960/jli.v4i1.634.1-8.
  6. Gorchein, A., Lim, C. K. and Cassey, P. (2009) ‘Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry’, Biomedical Chromatography, 23(6), pp. 602–606. doi: 10.1002/bmc.1158.
  7. Gottfried, J. M. (2015) ‘Surface chemistry of porphyrins and phthalocyanines’, Surface Science Reports. Elsevier, 70(3), pp. 259–379. doi: 10.1016/j.surfrep.2015.04.001.
  8. Heleno, S. A. et al. (2016) ‘Optimization of Microwave-Assisted Extraction of Ergosterol from Agaricus bisporus L. By-Products Using Response Surface Methodology’, Food and Bioproducts Processing. Institution of Chemical Engineers, 100, pp. 25–35. doi: 10.1016/j.fbp.2016.06.006.
  9. Heriyanto, Trihandaru, S. and Limantara, L. (2009) ‘Keadaan Koordinasi dan Proses Agregasi pada Bakterioklorofil A Serta Turunannya?: Studi Pada Pelarut Aseton-Air dan Metanol-Air’, Indo. J. Chem, 9(1), pp. 113–122.
  10. Kombado, A. R., Kristijanto, A. I. and Hastuti, D. K. A. K. (2014) Limbah Kerabang Telur Puyuh (Cortunix cortunix japonica) sebagai Pewarna Alami Kain Batik (Pengaruh Jenis Fiksatif terhadap Ketuaan dan Ketahanan Luntur. Ditelaah dengan Metode Pengolahan Citra Digital RGB). Salatiga: Universitas Kristen Satya Wacana.
  11. Lestari, I., Afrida and Sanova, A. (2014) ‘Sintesis dan Karakterisasi Senyawa Kompleks Logam Kadmium(II) dengan Ligan Kufperon’, Jurnal Penelitian Universitas Jambi Seri Sains, 16(1), pp. 01–08.
  12. Liao, M.-S. and Scheiner, S. (2002) ‘Electronic structure and bonding in metal porphyrins, metal=Fe, Co, Ni, Cu, Zn’, The Journal of Chemical Physics, 117(1), pp. 205–219. doi: 10.1063/1.1480872.
  13. Moiz, A. et al. (2010) ‘Study the Effect of Metal Ion on Wool Fabric Dyeing with Tea as Natural Dye’, Journal of Saudi Chemical Society. King Saud University, 14(1), pp. 69–76. doi: 10.1016/j.jscs.2009.12.011.
  14. Mongkholrattanasit, R. et al. (2009) ‘Natural Dye from Eucalyptus Leaves and Application for Wool Fabric Dyeing by Using Padding Techniques’, Natural Dyes, (September 2017), pp. 57–79. doi: 10.5772/20738.
  15. Pekel, N. and Guven, O. (1999) ‘Investigation of complex formation between poly(N-vinyl imidazole) and various metal ions using the molar ratio method’, Colloid and Polymer Science, 277(6), pp. 570–573. doi: 10.1007/s003960050426.
  16. Prantisa, D., Martono, Y. and Riyanto, C. A. (2017) Sintesis Pewarna Alami Kerabang Telur Puyuh (Cortunix cortunix) Secara Kompleksasi dengan Ion Cu(II). Salatiga: Universitas Kristen Satya Wacana.
  17. Rehman, S.-U. et al. (2011) ‘Synthesis and Characterization of Ni ( II ), Cu ( II ) and Zn ( II ) Tetrahedral Transition Metal Complexes of Modified Hydrazine’, J. Mex. Chem. Soc., 55(3), pp. 164–167.
  18. Samanta, A. K. and Konar, A. (2011) ‘Dyeing of Textiles with Natural Dyes’, Natural Dyes., pp. 29–56. doi: 10.5772/21341.
  19. Sivakumar, V., Vijaeeswarri, J. and Anna, J. L. (2011) ‘Effective natural dye extraction from different plant materials using ultrasound’, Industrial Crops and Products. Elsevier B.V., 33(1), pp. 116–122. doi: 10.1016/j.indcrop.2010.09.007.
  20. Triyani, N. F., Suhartana and Sriatun (2013) ‘Sintesis dan Karakterisasi Kompleks Ni(II)-EDTA dan NI(II)-Sulfanilamid’, Chem Info, 1(1), pp. 354–361.
  21. Wang, S. et al. (2016) ‘Synthesis of Zinc Porphyrins and Effect of Peripheral Substituents on the Coordination Reaction’, Indian Journal of Chemistry - Section A Inorganic, Physical, Theoretical and Analytical Chemistry, 55A(2), pp. 145–152.
  22. Wang, X.-T. et al. (2007) ‘Study of the Deposition Process of Eggshell Pigments Using an Improved Dissolution Method.’, Poultry science, 86(10), pp. 2236–2238.
  23. Zhao, R. et al. (2006) ‘A Study on Eggshell Pigmentation: Biliverdin in Blue-Shelled Chickens.’, Poultry science, pp. 546–549. doi: 10.1093/ps/85.3.546.