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Abstract 

Onsite wastewater treatment system named Johkasou has been widely applied in the Japanese rural areas, which the 

effluent is mainly discharged into stream channels. However, Johkasou effluent would potentially be a source of 

contamination that can deteriorate water and sediment quality of the receiving downstream network. In order to identify 

the effect of Johkasou effluent particularly in sediment, a study on the distribution of fecal indicators (F-RNA 

bacteriophages, total coliform (TC), and Escherichia coli [E. coli]) in several sediment spots of local open channels 

receiving Johkasou effluent was conducted. The results showed that the contents of F-RNA bacteriophages, TC and E. 

coli in the sediment of open channels were detected in high levels while those contents in the sediment of Johkasou 

drainage channel were up to two orders magnitude higher than in the open channel. A high number of fecal bacteria in 

the receiving open channels was majorly influenced by the number of domestic households. Moderate correlations of 

fecal bacteria indicator with solid sediment and volatile sediment indicate that the sediment particles can be carriers of 

microbes to the downstream water networks. Therefore, water flushing and hydraulic events are suggested to reduce 

sediment depth that contained fecal bacteria indicator in the open channel. 
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1. INTRODUCTION  

Onsite domestic systems have been stated as a potential source of fecal pollution in the water 

environment (Ahmed et al., 1995, Griffin et al., 2003). The inappropriate performance of onsite 

domestic systems releases the nutrients, organic matter, fecal indicators, and pathogens through 

effluents into the natural water bodies (Brontowiyono et al., 2013; Withers et al., 2011). After 

discharged into natural stream waters, treated effluents contained fecal indicators may suspend in 

the overlying water and/or settled down onto the sediment by associated with settleable-particles. 

So, it can increase the microbial number in the water and sediment especially fecal contaminants, 

e.g., total coliform and Escherichia coli. The high number of fecal indicators in the environment 

can be linked to the presence of a waterborne pathogen that has a significant impact on human 

health risk. 

Besides effluents of onsite domestic systems, living organisms including fecal indicators in 

sediment bed can be an alternative source of microbial contaminants in th decentralized 

environment. Sediment has been identified as a reservoir for E. coli based on the comparisons of 

bacterial concentration in sediment with a concentration in the water column directly above the 
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sediment layer. Many studies reported that sediments contain a higher population of both fecal 

coliform and E. coli than the overlying water and their long survival in the sediment (Davies et al., 

1995; Rahman and Soupir., 2009). The survival of fecal indicators in sediment depends on the 

availability of several factors, such as soluble organic matter and nutrient (Jamieson et al., 2005a,b), 

protection from the predators (Jamieson et al., 2005a,b), and shielding from exposure to UV 

sunlight (Koirala et al., 2008). 

The continuous effluents discharged from onsite domestic treatment systems would potentially be a 

primary source of fecal contamination in the water environment (Jamieson et al., 2003). Previous 

studies reported that high concentrations of total coliform and E. coli were recorded in both water 

and sediment of channels receiving effluents from Johkasou, an advanced onsite domestic system in 

Japan (Setiyawan et al., 2014). That high concentration of fecal indicators was still observed 

although during high flow condition which indicates less hydrological influenced on the fecal 

indicator in rural areas (Jamieson et al., 2003). The microbes associated sediment particles have an 

important role in transporting and resuspension of microbial indicators through the 

settleable-particles (Jamieson et al., 2004; Characklis et al, 2005). Thus, high level of fecal 

indicators in sediment can contaminate the downstream water network by their disposition with 

settleable particles during growing seasons such as heavy rainfall and storm runoff. 

Several studies had documented the distribution and transport of microbes in sewage systems of 

urban areas (Kapoor et al. 2015; Ashley et al. 2015) and in big natural water such as rivers and 

estuaries (Panasiuk et al. 2015; Sowah et al. 2014). Little is known, however, about the distribution 

of fecal indicators in the sediment of stream channels of decentralized areas which its effluents are 

constantly discharged. Stream channels of decentralized areas have different characteristics 

compared to natural rivers since the channels are artificially made of concrete material and low flow 

condition due to the main inputs from decentralized systems and underground water. Therefore, the 

objective of this study was to evaluate the distribution and survival of microbial indicators in 

sediment open channels of the local water environment receiving Johkasou effluents. To achieve 

this goal, the assessments of microbial indicators (heterotrophic bacteria, total coliform, and E. coli) 

in several sediment spots along open channels were performed and their affinities with sediment 

particles were also measured. 

2. METHODOLOGY 

2.1. Site description 

The study site is located in Gifu, Japan, near a residential area with a population around 250 
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inhabitants (Fig. 1). A total 52 household uses Johkasou facility in this area 39 houses (75%) using 

Gappei Johkasou and 13 households (25%) using Tandoku Johkasou. Sediment and water samples 

were collected from seven sampling site (St) along 1-m-wide open channels surrounding the 

residential area (St.1 – St.7). A sampling site in the channel of Johkasou effluents (St. JO) was 

collected, which the effluents from 16 Gappei Johkasou facilities were consistently discharged into 

the open channel before St.6. Along open channels, other water inputs were also recognized from 

the effluent of 10 Tandoku Johkasou and 2 Gappei Johkasou before St.2; effluents of 21 Gappei 

Johkasou facilities and underground water between St.3 and St.4; and a paddy field area runoff 

during the agricultural period from May to August.  

2.2. Sediment characterization 

Samples collection. Samples of water and sediments were collected in three times during fine 

weather in winter (January 28th, 2013) and spring (June 11th, 2014), and end of autumn (Dec 9th, 

2014) at several points along 200-m open channels that received effluents from Johkasou facilities. 

Sediments were also collected at Johkasou drainage channel and agricultural soils surrounding the 

open channels. The sediment mixed water were collected using a tube with an inner diameter of 30 

cm for St.1 to St.7; a small tube with an inner diameter of 10 cm for site in the Johkasou drainage 

channel (St.JO); The mixed liquor from each site was then collected by placing the sampling tube 

on the sediment bed, mixing the sediment with the overlying water, and collecting mixed sediment 

with overlying water in the tube. The sediment sample was then placed in a new 250-ml 

polypropylene bottle and was then placed into a cooler box prior transported to the laboratory. 

Sediment samples were stored at 5 °C and analyzed on the day of collection. 
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Figure 1 Distribution of sediment sites along open channel receiving Johkasou effluents in a 

residential area. 

 

Particle size analysis. Particle size distributions of sediment were classified using sieving method 

referred to the standard of The Japanese Geotechnical Society (JGS 0051-2000) with size scales as 

follow; silt/clay < 63 µm; fine sand 63 – 250 µm; medium sand 250 – 850 µm; 850 µm – 2 mm 

coarse sand. The sediment samples from St. 4, JO, and 7 were selected as a representative of 

sediment fraction sample from difference channel, which was collected on December 9, 2014. 

Briefly, 250 mL mixture of sediment and water was placed on a set sieving scale as explained above. 

The samples were stirred on each of sieve and the residue through the sieve washed using the 

deionized water until the wash water runs clear. Prior dry weight analysis, the residue was then 

placed on a large evaporation dish by carefully back-wash the sieve. 

Dry weight determination. A known weight of residues was placed in an oven at 105 °C for 24 h 

and the proportion of each gravel, sand, and mud were measured. Then, dry residues were further 

used to determine the dry volatile organic content by placed in an oven at 600 °C for 30 min. The 

percent dry weight was then calculated by difference from these results. 
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2.3. Microbial enumeration 

Sediment extraction. Approximately 1 g well-mixed wet sediment was placed in 15 ml centrifuge 

tube and centrifuged at 2,500×g, 15 °C for 10 min to separate between remaining water and 

sediment. The bulk wet-sediment was then divided into two groups; one portion for measuring fecal 

bacteria indicator and another for F-phages. For fecal bacteria analysis, the centrifuged sediment 

was mixed by adding 50 ml deionized sterile PBS water for 30 min and then centrifuged at 4,000×g, 

15 °C for 15 min (Davies et al., 1995). The supernatant was then subjected to further fecal bacteria 

analyses listed below. For measuring F-phages in sediment samples, viral particles were first 

extracted using 3% beef extract (Kyokuto Pharmaceutical Industry Co., Ltd, Tokyo, Japan) at pH 9 

and centrifuged at 12,000×g for 10 min, and then the supernatant was used for further analysis. 

Microbiological analysis. The HPC bacteria, TC, and E. coli in sediment and water samples were 

enumerated based on the standards method (APHA, 2005). The HPC bacteria were determined by 

the plate count method using tryptone glucose yeast extract (TGYE) agar. Fecal indicator bacteria 

such as TC and E. coli were conducted by the multiple tubes fermentation technique using colicatch 

reagents (ES Colicatch 1000, Eiken Chemical, Japan) within a series of 10-fold dilution, with three 

tubes each dilution. And, the F-phages were analyzed based on the Indah et al. (2011). 

 

2.4. Statistical analysis 

Principal Component Analysis (PCA) was used to identify a better interpretation from water and 

sediment quality. PCA analysis was conducted to all data from all sampling site exclude St. JO 

using Microsoft Office Excel 2010 and IBM® SPSS Statistic version 21.  

3. RESULTS AND DISCUSSION 

3.1. Sediment Characteristics 

Classifications of particles size in the sediment of upstream and downstream of open channel and 

Johkasou drainage channel were summarized in Table 1. The particle size distributions were 

relatively different between channels. Medium sand particles were the large fraction in the open 

channel and Johkasou drainage channel. At St. 4, the medium fraction was around 40.7% among 

the total sediment, while at St. 7, it was 28.5 % of the total sediment weight. Sediment particles at 

St. JO were categorized as the almost same percentage for each fraction excluding silt/clay (21.3% 

coarse sand, 23.3% medium sand, and 31.3% fine sand). The proportion of mud seemed increased 

from upstream to the downstream channel. This indicates the transfer of settleable particles to 
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downstream, which might also transport the associated microbial indicator. 

The each fraction of particles size was then extracted to measure the contents of HPC, TC and E. 

coli (Fig. 2). High contents of TC were found at fraction of silt/clay for most of the sites whereas 

the E. coli contents were detected high at fraction of clay/silt for all sites as well although there is 

no significant difference in the fraction of particles size for E. coli. The contents of HPC bacteria 

were observed at all of particles size fractions with the high content found at fractions of medium 

sand and silt/clay. The high contents of microbial indicators at fraction of silt/clay for most of the 

sites may indicate that the microbial indicators can associate with very light sediment that easy to 

be resuspended and transported into downstream areas. The high content of volatile sediment in 

silt/clay may introduce as the organic sources that important for bacteria growth. 

Table 1. Classification of sediment particles in sediments using wet sieving method 

 

  

Coarse

sand
a

Medium

sand
b Fine sand

c
silt/clay

d

St. 4

Fraction (%) 7.5 40.7 29.8 10.5

Organic content (%) 7.0 6.2 5.2 4.4

Particle density (g/cm
3
) 0.006 0.012 0.010 0.015

St. JO

Fraction (%) 21.3 23.3 31.3 2

Organic content (%) 4 4.7 9.2 7.3

Particle density (g/cm
3
) 0.006 0.015 0.002 0.005

St. 7

Fraction (%) 19.2 28.5 12.7 13.3

Organic content (%) 9.5 8.3 7.5 5

Particle density (g/cm
3
) 0.003 0.010 0.009 0.009

a = 2 mm - 850 µm, b = 850 - 250 µm, c = 250 - 63 µm, d = 63 µm <
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Figure 2. Concentrations of fecal bacterial indicators based on particle fractions in sediment 

3.2. Distribution of fecal indicator bacteria in sediment 

Distributions of fecal indicator bacteria (F-RNA Phages, E. coli, TC, HPC) in sediment along the 

open channel and drainage channel receiving Johkasou are displayed in Fig. 3. The microbial 

distributions were measured during winter (January 28th, 2013), spring (June 11th, 2014), and 

autumn (December 9th, 2014) with the significant difference in flow rate. Flow rate in the autumn 

season was the highest compared to other seasons.  

 

Figure 3. Distribution of F-RNA Phages, E. coli, total coliform and HPC along open channel and 
drainage channel receiving Johkasou effluent 
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Statistically significant differences of fecal bacteria in the sediment among the sites in the open 

channels were not observed (Fig. 3). The mean contents of F-RNA Phage, HPC, TC, and E. coli in 

the Johkasou drainage channel were 2.1×103 PFU/g 3.5×108 CFU/g, 4.8×107 MPN/g, and 4.6×104 

MPN/g, respectively. These contents were higher than those parameters in the open channels 

exclude concentration of F-RNA phage. This indicates that the Johkasou effluent is as the main 

point source of fecal bacteria particularly in sediment and due to low flow rate effects the fecal 

bacteria that associated with organic carbon settled down onto the bottom. However, the content of 

F-RNA phage was higher at St. 3 and St. 5 compared to other sites along the open channel. The 

effluent of Tandoku Johkasou might be the major reason increasing the F-RNA phage at these sites 

since Tandoku Johkasou only treats the black water and gray water is discharged into the open 

channel.  

The contents of fecal indicator bacteria along the open channel were different between upstream 

and downstream area. The content of fecal indicator bacteria was relatively higher in the 

downstream than in the upstream, which the quantity of domestic wastewater input might affect the 

water and sediment quality in that area. Continuous effluent discharged from Johkasou into the 

open channel can be a primary source of contamination that change the water and sediment quality 

(Jamieson., 2005a). By high the organic content in sediment of Johkasou drainage channel rather 

than other open channel sampling sites, this could be a source for bacteria to grow and survive in 

this channel.  

Distributions of HPC, TC, and E. coli in sediment fluctuated in seasons along the open channels. 

The content of microbial indicator was relatively higher during spring compared to winter and 

autumn. A high flowrate during spring (74 L/min) is predicted to carry settleable particles 

associated with other contaminants including bacteria to the downstream area particularly at St.7 

that received water from not only from open channels but also water from paddy field area and 

another residential area. Many studies reported that high flow event is an important role to carry 

microbial associated settleable particles and resuspended downstream receiving water. Bacterial 

indicator organisms exhibited relatively same behavior, with an average of 20 – 30 % of organisms 

associated with the particles in dry weather and 30 – 55 % in storm weather (Characklis et al., 

2005). This higher removal of particles-associated microbes relative to the total microbial 

concentration suggests that sedimentation may be an important role on microbial removal 

mechanism in the sediment. 
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3.3. Relations between microbial indicators and sediment contents. 

 

Figure 4. Relationships of sediment microbes for a) HPC, b) TC, and c) E. coli with solids sediments; 
and d) HPC, e) TC, and f) E. coli with volatile sediments in the open channels receiving 
Johkasou effluent. 

 

Correlations of microbial indicators and sediment contents were evaluated to identify the behavior 

of microbes associated sediment particle. The relations between fecal indicator (HPC, TC, and E. 

coli) with sediment particles related to solid sediments and volatile sediments in the open channels 

receiving Johkasou effluent are displayed in Fig. 4. HPC densities were strongly correlated to solid 

sediments and volatile sediments (r = 0.64 and r = 0.67, respectively). While, the fecal indicators, 

TC and E. coli, were moderately correlated with solid sediments (r = 0.45 and r = 0.47, 

respectively) and volatile sediments (r = 0.47 and r = 0.52), respectively. These positive correlations 

indicate that the microbial indicators associated with sediment particles could be a carrier, 

especially for volatile sediments as a part of fine particles that export the microbes to the 

downstream water network. Another study noted that sediment particles of around 20 – 30 % 

associated to bacterial indicator organisms during dry weather (Characklis et al., 2005). 

Furthermore sediment analysis is required to reveal the behavior microbial indicators associated 

particles sediments that might be a key role on microbial sedimentation during storm events.  
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3.4. Principal component analysis 

In order to obtain important information from the data, PCA analysis was further conducted on the 

data of distributions fecal indicator bacteria in sediment excluded for F-RNA phage because it was 

insufficient data. The PCA results were retained the sediment quality into three principal 

components (PCs) that explained 70.9% of total variance from the data set (Fig. 5). The three 

factors are related to the FIB contents, settleable particles, and sediment quantity.  

 

 
Figure 5 The results of PCA in bi-dimensional plots for scores of seven variables in sediment (a) and 

factor scores of sites in seasons (b) between FIB contents (PC 1) and sediment quantity (PC 
3). 

 

The PC indicated the contents of FIB contrasts with total solid and sediment depth. This showed the 

content of FIB in the sediment may be affected by the weight of total solid and sediment depth (5a). 

Thicker of sediment contains high organic contain inside, however, it is less microbial survive in it. 

The distribution of FIB in sediments of open channels was not significantly different in seasons, 

although some fluctuations of FIB content could be found in the downstream excluding winter (Fig. 

5b). These fluctuations may be caused by the settleable-particles associated with bacteria and then 

by low flow rate affected the settleable-particles easily settled down during winter season. Then it 

increases their concentration in the downstream channel after receiving Johkasou effluent. 

 

4. CONCLUSION 

Distribution of microbial indicators in sediments of the open channels and the Johkasou drainage 

channel was evaluated during three different of weathers. The contents of F-RNA phages, HPC, TC, 

and E. coli in sediment along open channels were recorded at high levels and the sediment of 
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Johkasou drainage channel was the highest microbial contents among to the sampling sites in open 

channels. High contents of E. coli in sediment may reflect the concentrations of E. coli in overlying 

water and might be the source of the microbes in the downstream area. TC and E. coli contents 

downstream exhibited increasing trends during spring, which affected by increasing flow rate that 

can carry the fine particles associated microbes. Positive correlations of most microbial indicators 

with solid sediments and volatile sediments could suggest the essential of sediments as the carrier to 

transport sediment particles associated microbes to downstream receiving waters. Furthermore, the 

results of this study are required further study on microbial removal mechanism in sediments during 

storm weather.  
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