Main Article Content

Abstract

Compost Solid Phase Microbial Fuel Cells adalah salah satu alternatif teknologi pemrosesan sampah organik yang mampu menghasilkan energi yang bersih sebagai hasil dari pengolahan material padat. Masalah dalam CSMFCs adalah masih rendahnya daya listrik yang dihasilkan selama proses berlangsung, sehingga belum dapat diaplikasikan dengan kondisi yang diharapkan.  Penelitian ini mengembangkan sebuah sistem CSMFCs menggunakan pengadukan sebagai variabel bebas yang mempengaruhi kinerja CSMFCs, baik dalam menghasilkan kompos matang maupun listrik. Elektroda yang digunakan adalah elektroda graphene yang dirangkai dalam reaktor menggunakan konfigurasi single chamber – air cathode. Volume sampah yang digunakan adalah 2/3 dari volume reaktor dan sumber sampah berasal dari sampah sisa makanan, sampah sisa sayuran, ampas kedelai, dan sampah daun berasal dari pekarangan sekitar Undip yang dioperasikan dalam kondisi batch. Hasil penelitian CSMFCs menunjukkan bahwa kinerja paling optimum terdapat pada frekuensi pengadukan 4 hari sekali. Kompos yang dihasilkan memenuhi ketentuan SNI 19-7030-2004 dan menghasilkan produksi listrik dengan Power Density, Coulombic Efficiency (CE), dan Energy Efficiency (EE) berturut-turut sebesar 17,744 mW/m2, 0,6477%, dan 0,0000733% pada hari ke 20. 

Article Details

References

  1. Amanah, F., (2012), Pengaruh Pengadukan Dan Komposisi Bahan Kompos Terhadap Kualitas Kompos Campuran Lumpur Tinja, Skripsi, Universitas Indonesia, Jakarta, Indonesia.
  2. Brownson, D. A. C., Kampouris, D. K., Banks, C. E., 2011, An Overview of Graphene in Energy Production and Storage Applications, Journal of Power Sources, 196(11), pp. 4873-4885.
  3. Caceres, R., Malinska, K., Marfa, O., (2018), Nitrification within Composting: A Review, Waste Management, 72, pp. 119–137.
  4. Damanhuri, E., Padmi, T., (2010), Pengelolaan Sampah, Diktat Program Studi Teknik Lingkungan, Institut Teknologi Bandung, Bandung, Indonesia, pp. 30.
  5. Ermolaev, E., Jarvis, A., Sundberg, C., Smars, S., Pell, M., Jonsson, H., (2015), Nitrous Oxide and Methane Emissions from Food Waste Composting at Different Temperatures, Waste Management, 46, pp. 113–119.
  6. Geim, A. K., (2009), Graphene: Status and Prospects, Prospects, 324, pp. 1–8.
  7. Getahun, T., Nigusiea, A., Entelea, T., Gerven, T. V., Van derBruggen, B., (2012). Effect of Turning Frequencies on Composting Biodegradable Municipal Solid Waste Quality, Resources, Conservation and Recycling, 65, pp. 79–84.
  8. Jiang-ming, Z., (2017), Effect of Turning Frequency on Co-Composting Pig Manure and Fungus Residue, Journal of the Air and Waste Management Association, 67(3), pp. 313–321.
  9. Kalamdhad, A., Kazmi, (2009), Effects of Turning Frequency on Compost Stability and Some Chemical Characteristics in a Rotary Drum Composter, Chemosphere, 74(10), pp. 1327–1334.
  10. Kusuma, M. A., (2012). Pengaruh Variasi Kadar Air Terhadap Laju Dekomposisi Sampah Organik Di Kota Depok, Tesis, Universitas Indonesia, Depok, Indonesia.
  11. Larney, Francis, J., Katherine, E., Buckley, Hao, X., McCaughey, W. P., (2006). Fresh, Stockpiled, and Composted Beef Cattle Feedlot Manure, Journal of Environment Quality, 35(5), pp. 1844.
  12. Lee, H. S., Parameswaran, P., Kato-Marcus, A., Torres, C. I., Rittmann, B. E., (2008), Evaluation of Energy-Conversion Efficiencies in Microbial Fuel Cells (Mfcs) Utilizing Fermentable and Non-Fermentable Substrates, Water Research, 42(6–7), pp. 1501–1510.
  13. Liu, H., Logan, B. E., (2004), Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, Environmental Science & Technology, 38(14), pp. 4040–4046.
  14. Logan, B. E., (2008), Microbial Fuel Cells, John Wiley & Sons, USA, pp. 44–60.
  15. Muthi'ah, H., (2017), Pengaruh Variasi Volume Sampah Padat Organik Dan Sumber Bakteri Terhadap Kinerja Solid Phase Microbial Fuel Cell (SMFC), Skripsi, Universitas Diponegoro, Semarang, Indonesia.
  16. Makan, A., Mountadar, M., (2012), Effect of C / N Ratio on the in-Vessel Composting under Air Pressure of Organic Fraction of Municipal Solid Waste in Morocco, Journal of Material Cycles and Waste Management, 14(3), pp. 241–249.
  17. Ogunwande, G. A., Osunade, J. A., Adekalu, K. O., Ogunjimi, L. A. O., (2008), Nitrogen Loss in Chicken Litter Compost as Affected by Carbon to Nitrogen Ratio and Turning Frequency, Bioresource Technology, 99(16), pp. 7495–7503.
  18. Sharma, Yogesh, Li, B., (2010), The Variation of Power Generation with Organic Substrates in Single-Chamber Microbial Fuel Cells (SCMFCs), Bioresource Technology, 101(6), pp. 1844–1850.
  19. Wang, Tsan, C., Liao, F. Y., Liu, K. S., (2013), Electrical Analysis of Compost Solid Phase Microbial Fuel Cell, International Journal of Hydrogen Energy, 38(25), pp. 11124–11130.
  20. Wang, Tsan, C., Lee, Y. C., Liao, F. Y., (2015), Effect of Composting Parameters on the Power Performance of Solid Microbial Fuel Cells, Sustainability (Switzerland), 7(9), pp. 12634–12643.
  21. Waqas, M., Nizamib, A. S., Aburiazaizaa, A. S., Barakata, M. A., Rashid, M. I., Ismail, M. I., Optimizing the Process of Food Waste Compost and Valorizing Its Applications: A Case Study of Saudi Arabia, Journal of Cleaner Production, 176, pp. 426–438.
  22. Widarti, Nining, B., Wardhini, W. K., Sarwono, E., (2015), Pengaruh Rasio C/N Bahan Baku Pada Pembuatan Komppos Dari Kubis dan Kulit Pisang, Integrasi Proses, 5(2), pp. 77.