Three-Pass Protocol Concept in Hill Cipher Encryption Technique

Andysah Putera Utama Siahaan
Faculty of Computer Science
Universitas Pembangunan Panca Budi
Jl. Jend. Gatot Subroto Km. 4,5 Sei Sikambing, 20122, Medan, Sumatera Utara, Indonesia
andiesiahaan@gmail.com

Abstract—Encryption is imperative in the world of computers. Delivery of data requires a technique that the data is free from attack. Hill Cipher is the popular cryptography method. There are so many techniques that have been made to dismantle the message. Hill Cipher uses the symmetric key model. This key must be distributed to the recipients so that they can restore the ciphertext into plaintext. To avoid the key interception, the Three-Pass Protocol can be implemented to this situation. It avoids the key delivery. By using this technique, either the sender or the recipient does encryption and decryption by their keys respectively without sharing them with each other. It is impossible to the attacker to get the key since the both participants keep the keys safely. Hence, the information transmission is more secure than not using this concept.

Keywords - Cryptography; Three-Pass Protocol; Hill Cipher

I. INTRODUCTION

There is numerous way to secure the information such as hiding and modifying the content. Sometimes it needs a carrier to camouflage the message. The cryptography tells how the data is secured. Many algorithms occupied to compare which algorithm is the best. There are based on math, and there are based on classic calculation. This research focus on Hill Cipher. It is one of the encryption algorithms that uses matrix [8][7]. The smallest matrix of 2x2 can produce the ciphertext by providing key as the determinant. The matrix bigger than 2x2 can be used as well, but the difficulties in finding the inverse matrix gain more too. In Hill Cipher, the number inserted can be randomly described as the keys beforehand [5][6]. However, sometimes the key provided does not work. It happens when decoding the ciphertext back to plaintext; the plaintext resulted is different from the original message. Before using the key, it must be tested that it has the right determinant. And if so, the inverse key will be applied to the ciphertext when decryption is happening. Since the key is the way to open the decryption, the key must be sent to someone who is responsible for decrypting the message. The key must be distributed, and this moment will be taken by third parties to intercept the known plaintext to be breakable. Three-Pass Protocol is the best way to reduce the gap of interception. On the application of this algorithm, the form of the matrix must be modified. The are several changes of Hill Cipher part to make the both algorithms work together.

II. THEORIES

The symmetric key is one of the cryptographic systems that uses the same kind of keys in encryption and decryption [9]. Hill cipher is one of the symmetric key algorithms. It uses the the similar key in its application. However, the keys used in encryption and decryption are different but from the same formula. It happens because the key used in decryption is the inverse of the original key applied when sending plaintext to the receiver [2][3]. The both keys must be correctly calculated for them to generate encrypt and decrypt key pair in encryption and decryption works.

A. Hill Cipher

Hill Cipher is an application of modulo arithmetic in cryptography [4]. This cryptographic technique uses matrix as the vessel of information exchange either on encryption or decryption part. The basic theory of matrix used in Hill Cipher is the multiplication between the matrix and the inverse of the matrix. Hill Cipher is a symmetric key hard to solve because the cryptanalysis techniques such as frequency analysis can not be applied easily to solve this algorithm [2]. Hill cipher is very difficult to solve if cryptologist has only the ciphertext, but it can be solved easily if the cryptologist has a part of the plaintext.

Both participants must generate a key matrix to encrypt the message. It must be invertible mod 26 or total character used. The plaintext will then be encrypted in blocks of size n. For example, the matrix is a 2×2 , and the message will be formed in blocks of 2 characters.

ISSN: 1907 - 5022

Key =
$$\begin{bmatrix} 3 & 25 \\ 24 & 17 \end{bmatrix}$$

Message = MI
MI = $[12, 8]$
Ciphertext = $\begin{bmatrix} 3 & 25 \\ 24 & 17 \end{bmatrix} \begin{bmatrix} 12 \\ 8 \end{bmatrix}$
= $[266, 424] \text{ MOD } 26$
= $[2, 6]$
= CI

B. Three-Pass Protocol

HThree-Pass Protocol method is a way to send a message securely from sender to receiver without the need to exchange or distribute encryption keys [1]. In Three-Pass Protocol, the sender encrypts the message using a unique encryption key then they send it to the receiving participant. When the receiver gets the encrypted message, they then encrypt it with their own unique encryption key and send back to the sender. Then the sender decrypts the message with their own key. After this, there is only one level of encryption on the package which is sent to the receiver who decrypts the final layer with their unique decryption key and reads the data. This protocol can only be used if using commutative ciphers or LIFO method. Commutative means that the order of encryption and decryption is interchangeable (Encryption A - Encryption B -Decryption A - Decryption B) [4]. Figure 1 explains the flow of Three-Pass Protocol scheme.

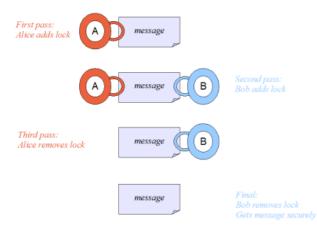


Figure 1. The Three-Pass Protocol scheme

III. METHODOLOGY

In the application of Three-Pass Protocol in Hill Cipher, the plaintext cannot directly transform to ciphertext and then reencrypt the message with the second key. It will not turn the ciphertext into the original message; it turns to different characters order. The encryption block needs to be modified to a square block. It means when a key uses a matrix of 2 x 2, the plaintext block will use a 2 x 2 matrix as well. It is totally different from the usual Hill Cipher encryption that uses different matrix order.

$$C = \begin{pmatrix} a & b \\ c & d \end{pmatrix} x \begin{pmatrix} p1 & p3 \\ p2 & p4 \end{pmatrix} \mod TotalCharacter \tag{1}$$

$$D = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} x \begin{pmatrix} c1 & c3 \\ c2 & c4 \end{pmatrix} \mod TotalCharacter$$
 (2)

From the formulas above, the encryption and decryption are using the same blocks with the key.

IV. TESTING AND IMPLEMENTATION

The explanation of the a Three-Pass Protocol method is show in the next following example.

Plaintext : ANDY
$$\begin{pmatrix} 65 & 68 \\ 78 & 89 \end{pmatrix}$$

Key 1 :
$$\binom{240}{65} \frac{97}{163}$$

Key 2 :
$$\begin{pmatrix} 187 & 23 \\ 148 & 223 \end{pmatrix}$$

Key
$$1^{-1}$$
 : $\begin{pmatrix} 205 & 145 \\ 113 & 16 \end{pmatrix}$

Key
$$2^{-1}$$
 : $\begin{pmatrix} 55 & 209 \\ 76 & 115 \end{pmatrix}$

Now we prove that the keys provided are invertible.

Key 1 :
$$\binom{240}{65} = \binom{97}{163}$$

47 (D
$$\neq$$
 0 and D \neq Even)

Key 2 :
$$\begin{pmatrix} 187 & 23 \\ 148 & 223 \end{pmatrix}$$

153 (D
$$\neq$$
 0 and D \neq Even)

Since determinants are not zero or even, it can be used as the key pair in Hill Cipher.

Encryption 1

Plaintext :
$$\begin{pmatrix} 65 & 68 \\ 78 & 89 \end{pmatrix}$$

Ciphertext 1 :
$$\begin{pmatrix} 240 & 97 \\ 65 & 163 \end{pmatrix} \times \begin{pmatrix} 65 & 68 \\ 78 & 89 \end{pmatrix}$$

23166 mod 256

43

C3 : (240 * 68 + 97 * 89) mod 256

24953 mod 256

121

C4 : (65 * 68 + 163 * 89) mod 256

18927 mod 256

239

Ciphertext 1 : $\begin{pmatrix} 126 & 121 \\ 43 & 239 \end{pmatrix}^T$

Ciphertext 1^{T} : $\begin{pmatrix} 126 & 43 \\ 121 & 239 \end{pmatrix}$

Encryption 2

Ciphertext 1^T : $\begin{pmatrix} 126 & 43 \\ 121 & 239 \end{pmatrix}$

Ciphertext 2 : $\begin{pmatrix} 187 & 23 \\ 148 & 223 \end{pmatrix} \times \begin{pmatrix} 126 & 43 \\ 121 & 239 \end{pmatrix}$

C1 : (187 * 126 + 23 * 121) mod 256

26345 mod 256

233

C2 : (148 * 126 + 223 * 121) mod 256

45631 mod 256

63

C3 : (187 * 43 + 23 * 239) mod 256

13538 mod 256

226

C4 : (148 * 43 + 223 * 239) mod 256

59661 mod 256

13

Ciphertext 2 : $\begin{pmatrix} 233 & 226 \\ 63 & 13 \end{pmatrix}^T$

Ciphertext 2^T : $\begin{pmatrix} 233 & 63 \\ 226 & 13 \end{pmatrix}$

Ciphertext 2^T is the final result of the encryption the both methods. The decryption does the same way as earlier. The following explanation describes how it was done.

Decryption 1

Ciphertext 2^T : $\begin{pmatrix} 233 & 63 \\ 226 & 13 \end{pmatrix}$

Ciphertext 3 $\begin{pmatrix} 205 & 145 \\ 113 & 16 \end{pmatrix}$ x $\begin{pmatrix} 233 & 63 \\ 226 & 13 \end{pmatrix}$

C1 : (205 * 233 + 145 * 226) mod 256

80535 mod 256

151

C2 : (113 * 233 + 16 * 226) mod 256

29945 mod 256

249

C3 : $(205 * 63 + 145 * 13) \mod 256$

14800 mod 256

208

C4 : (113 * 63 + 16 * 13) mod 256

7327 mod 256

159

Ciphertext 3 : $\begin{pmatrix} 151 & 208 \\ 249 & 159 \end{pmatrix}^T$

Ciphertext 3^{T} : $\begin{pmatrix} 151 & 249 \\ 208 & 159 \end{pmatrix}$

Decryption 2

Ciphertext 3^{T} : $\begin{pmatrix} 151 & 249 \\ 208 & 159 \end{pmatrix}$

Plaintext : $\begin{pmatrix} 55 & 209 \\ 76 & 115 \end{pmatrix} \times \begin{pmatrix} 151 & 249 \\ 208 & 159 \end{pmatrix}$

P1 : (55 * 151 + 209 * 208) mod 256

51777 mod 256

65

P2 : (76 * 151 + 115 * 208) mod 256

35396 mod 256

68

P3 : (55 * 249 + 209 * 159) mod 256

46926 mod 256

78

P4 : (76 * 249 + 115 * 159) mod 256

37209 mod 256

89

Plaintext : $\begin{pmatrix} 65 & 78 \\ 68 & 89 \end{pmatrix}^T$

Plaintext T : $\begin{pmatrix} 65 & 68 \\ 78 & 89 \end{pmatrix}$

Plaintext^T is the final result of the decryption the both methods.

After calculation, the plaintext is converted into three parts of ciphertexts before finally turned back into plaintext again. Each participant needs to perform two stage of calculation where the sender does the encryption and decryption. Table 1 shows the complete work of encryption and decryption processes. The sentence is "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG".

TABLE 1. SAMPLE OF THREE-PASS PROTOCOL IN HILL CIPHER

NO.	PT	CT1	CT2	CT3	PT
1	84	228	5	115	84
2	72	179	225	97	72
3	69	220	63	240	69
4	32	135	123	248	32
5	81	198	212	185	81
6	85	24	131	252	85
7	73	11	42	167	73
8	67	179	20	194	67
9	75	253	102	228	75

NO.	PT	CT1	CT2	CT3	PT
10	32	228	140	67	32
11	66	169	123	14	66
12	82	246	81	242	82
13	79	30	154	224	79
14	87	34	32	91	87
15	78	213	124	190	78
16	32	186	153	133	32
17	70	151	150	148	70
18	79	72	28	234	79
19	88	162	109	46	88
20	32	72	110	109	32
21	74	197	79	183	74
22	85	251	141	11	85
23	77	142	202	234	77
24	80	95	169	111	80
25	83	181	111	183	83
26	32	187	141	8	32
27	79	129	90	74	79
28	86	149	88	118	86
29	69	9	70	250	69
30	82	92	222	15	82
31	32	7	151	48	32
32	84	96	213	10	84
33	72	39	122	240	72
34	69	68	208	248	69
35	32	216	153	142	32
36	76	96	232	187	76
37	65	69	139	137	65
38	90	255	179	220	90
39	89	155	206	180	89
40	32	163	180	110	32

The use of Three-Pass Protocol on Hill Cipher is very useful way to improve the data security level in the process of sending a message. Besides improving the security, this method also stops distributing keys between sender and receiver. If someone wants to take the information, it will be suspended. In Table 1, there are three ciphertexts produced. Someone might be intercepting the information. However, he does not have the keys since they are not transferred. It is hard to break the hidden information since the key is not provided. However, in the conventional method, the key is distributed as well. It makes the key vulnerable.

V. CONCLUSION

It is concluded that Three-Pass Protocol can be applied in Hill Cipher encryption. It helps the sender to give more protection to their data from being intercepted. The undistributed key system is more secure than the common method since the both participants do not have to exchange key when doing this process. Three-Pass Protocol is the best technique to gain the information security more.

REFERENCES

- A. A. Abdullah, R. Khalaf dan M. Riza, "A Realizable Quantum Three-Pass Protocol Authentication," Mathematical Problems in Engineering, 2015.
- [2] R. Kumar dan R. C., "Analysis of Diffie Hellman Key Exchange Algorithm with Proposed Key Exchange Algorithm," International Journal of Emerging Trends & Technology in Computer Science, vol. 4, no. 1, pp. 40-43, 2015.
- [3] M. Ahmed, B. Sanja, D. Aldiaz, A. Rezaei dan H. Omotunde, "Diffie-Hellman and Its Application in Security Protocols," International Journal of Engineering Science and Innovative Technology, vol. 1, no. 2, pp. 69-73, 2008.
- [4] C. Stubbs, "Three-Pass Protocol," 20 November 2013. [Online]. Available: http://asymmetriccryptography.blogspot.co.id/. [Diakses 1 May 2016].
- [5] M. N. A. Rahman, A. F. A. Abidin, M. K. Yusof dan N. S. M. Usop, "Cryptography: A New Approach of Classical Hill Cipher," International Journal of Security and Its Applications, vol. 7, no. 2, pp. 179-190, 2013.
- [6] S. I. Chowdhury, S. A. M. Shohag dan H. Sahid, "A Secured Message Transaction Approach by Dynamic Hill Cipher Generation and Digest Concatenation," International Journal of Computer Applications, vol. 23, no. 9, pp. 25-31, 2011.
- [7] A. A. Khalaf, M. S. A. El-karim dan H. F. A. Hamed, "A Triple Hill Cipher Algorithm Proposed to Increase the Security of Encrypted Binary Data and its Implementation Using FPGA," ICACT Transactions on Advanced Communications Technology, vol. 5, no. 1, pp. 752-757, 2016.
- [8] J. Chase dan M. Davis, "Extending the Hill Cipher," 2010.
- [9] A. P. U. Siahaan, "RC4 Technique in Visual Cryptography RGB Image Encryption," SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE), vol. 3, no. 7, pp. 1-6, 2016.

BIOGRAPHY

Andysah Putera Utama Siahaan was born in Medan, Indonesia, in 1980. He received the S.Kom. degree in computer science from Universitas Pembangunan Panca Budi, Medan, Indonesia, in 2010, and the M.Kom. in computer science as well from the University of Sumatera Utara, Medan, Indonesia, in 2012. In 2010, he joined the Department of Engineering, Universitas Pembangunan Panca Budi, as a Lecturer, and in 2012 became a junior researcher.

He is applying for his Ph. D. degree in 2016. He has written in several international journal and conference. He is now active in writing papers and joining conferences.