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Comparison of CNN and SVM for Ship Detection in
Satellite Imagery

Abstract— . Satellites with optical sensors generate images of the
Earth over relatively large areas, Optical satellite images provides
unigque insights into various markets, including agriculture,
defense and intelligence, and energy. Ship detection using satellite
images is very important because it can help manage marine
traffic  services, defense and intelligence, and fisheries
management. In this study, opfical satellite images are used for
training models for detecting ship. Machine Learning (ML)
algorithms such as deep learning and Support Vector Machine
(SYM) have been applied to detect objects in previous studies.
Convolution Neural Network (CNN)-based deep learning
technology outperformed many algorithms that have existed to
some extent| 1]. CNN has proven to be able to outperform SVM to

detect ships with an average training accuracy is 0,9912 or 99.12%
and the validation accuracy is 09798 or97,89%. While SVM gets
an accuracy of 0,9438 or 94,38%.

Keywords— Optical Satellite Imagery; Object Detection; Machine
Learning; Convolution Neural Network; Support Vector Machine;

[ INTRODUCTION

Detection of ships in satellite images has been widely applied
in maritime security and sea traffic control [2]. Ship detection
using satellite images is very important because it can help
manage marine traffic services, defense and intelligence. and
fisheries management. Remote sensing has a very important
role in monitoring ships because of its long operating distance
and wide monitoring range[3].

Optical satellite images have a higher image resolution and
more content can be displayed than other remote sensing
images, which are more suitable for ship detection. However.
optical satellite mmages usually have two mam issues: 1)
Weather conditions such as clouds, fog and sea waves produce
more pseudo targets for ship detection. 2) Optical satellite
images with higher resolution naturally produce a greater
amount of data than other remote sensing images [2]

Today, research in the field of computer vision is very popular.
In computer vision contained operations starting from capturing
object images by a camera system, processing image objects
into a more concise and simple form but stll representing
objects. until the most important is analysis to determine the
type of object[4]

Machine leaming algorithms such as deep learning and support
vector machine (SVM) have been applied to detect objects in
previous studies  [Z][3][6]|7189I[1O][L1][12]. Recently
CNN-based deep leaming technology outperformed many
algorithms that have existed to some extent[1]. SVM was
chosen because it 1s considered as one of the best and
uncomplicated nitial classification algorithms[3].

Although the Machine Learming algorithm has been widely
applied to image classification, an algorithm is not always
suitable for every data type or image type. Therefore this study
aims to compare which algorithm is better for detecting ship

objects between CNN and SVM.

I[. LITERATUR REVIEW

A. Optical Satellite Imagery

Satellite imagery became publically available in 1972, and led
to the founding of NPA Satellite Mapping (NPA) as a
consultancy in the same year. Smce then, the evolution in
capabilities of both optical satellites and data processing has
been staggering. Satellites with optical sensors generate images
of the Earth over relatively large areas.

Recently interest in remote sensing systems using satellite
images is growing, for example in maritime security, traffic
control, fisheries surveillance, illegal disposal of oil waste, and
marine pollution [13]. Optical satellite images provides unique
insights into various markets, including agriculture, defense and
intelligence, and energy [1] [13] [14][15][16][17][18].

B. Support Vector Machine (STM)

SVM is one of the best classification algorithms and is nol as
complicated as Deep Leaming [5]. Support vector machine
aims to find the hyperplane that maximizes distances between
the hyperplane and the support vectors (the closest data
points)[19]. In other words, there is labeled training data
(supervised learning). the algorithm produces an optimal
hyperplane that categorizes new examples. In the two
dimensional spaces this hyperplane is a line separating an
airplane into two parts where in each class are located on both
sides.




Figure 1. Sample it to divide into two classes

The problem can be formulated as a quadratic programming
that reads.

1
minimize = ||w|]”
x 2

subject to y"}{w]-x{") +b>1),i=1,..., n,

w.b : parameters of our hypothesis function,

y(1) : represents the label for a specific example,

x(i) : the ith example out of n

v : the minimum geometric margin of all training examples.
C. Convolution Neural Network (CNN)

Deep leaming is used to speed up the leaming process of the
neural network by using many layers, usually more than 7
layers|20]. One deep learning model that is often used for image
classification 15 Convolution Meural Network (CNN). CNN is
one of the variation models in Artificial Neural Network (ANN)
algorithm that is widely used in image recognition [23]. In
previous studies. many classification algorithms used fo detect
satellite images were the result of the development of the ANN
algorithm, such as Convolution Neural Network[21] [22].

Asthename implies, CNN utilizes the convolution process. By
moving a certain sized convolution kemel (filter) to an image.
The CNN method proved to be able to outperform other
Machine Learning methods in the case of object classification
in images[23]
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Figure 2. CNN fully connected illustration

D. Keras, TensorfFlow, and Scikit-Image

TensorFlow is an open source for machine leaming platform. It
has a large ecosystem, libraries. and community. which can
help researchers develop advanced technology in machine
leaming and make it easier for developers to use machine
leaming in building their systems. Keras is TensorFlow's
implementation of the Keras API specification. Keras makes
TensorFlow easier to use without sacrificing flexibility and
performance. Seikit-image contains many algorithms for image
processing. Scikit-image is available free and without
limitations. [24].

[1I. METHODOLOGY

A. Data Set

In this study. according to how to obtan the data used can be
categorized as sccondary data which is an archive of a provider
of commercial satellite imagery called Planet. This institution
uses several small satellites to take pictures of the entire Earth
every day. The limited equipment resources make it difficult for
researchers to get satellite image data directly (primarv data).
so secondary data is used. Secondary data Is data that is not
obtained directly by researchers. the data here can bein the form
of documents or archives owned by institutions or someone
who is the subject of research.

Information about the dataset used :

1. Satellite imagery for the San Francisco Bay and San Pedro
Bay regions in California, United States.

2. The satellite imagery used is the capture of port area sightings
from above.

3. The type of satellite imagery used is an optical sensor image
or cannot through the cloud.

4. Data consists of 4000 images with a size of 80x8(0 pixels and
8 optical sensor images in high-resolution ports. From 4000
images. there are 1000 images of "ships" (Figure 3.) and 3000
images of "non-ships" (Figure 4).

5. Image format in PNG or (_png) format.

6. JSON formatted file containing data, labels, scene id's ana
location metadata.
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Figure 4. Images of non-ship

B. SVM

We construct the SVM model use scikit-image in Python 3.7
version. We use scikit-image hog function to extract the HOG
features. Apart from the HOG features, the color histogram and
the raw color feature are also used. The SVM was trained with
train/val split of 3200/800, an image size of 80x80. Steps of
detection ship using SVM algorithm as shown as Figure 5.

Setup training and
validation data

Extract images
features

Training the
classifier

.

Use classifier to
detect the ships

Figure 5. Steps of detection with SVM

C, CNN

We construct the CNN model use keras from TensorFlow 2 in
Python 3.7 version. The CNN was trained with train/val split of
3200/800, an image size of 80x80, 18 epoch. Our network
consists of 10 layers of CNN as shown m Figure 6.

In this network there are convolution., max-pooling, and fully
connected processes. The convolution process is applied
without padding. so it does not change the size of the image
both before and after the convolution process. The purpose of
max-pooling is to take samples that represent inputs. reduce
their dimensions and make it possible to make assumptions
about features contamed in buried sub-regions. Fully
Connected layer connects everyneuron in one layer to the every
neuron in another layer.
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Figure 6, Layers of CNN




IV. RESULT

A. SIM

Afier sets the train and tes data. we read the images from the
disk and extract color feature, histogram features and HOG
features and bag them all in cell using the wrapper function.
After this the features are scaled using sklearn standardscaler
and split in test and traming set in a 80-20 ratio.

Our program takes 3.41 seconds to train the classifier. After
training the classifier, we test it with validation data that has
been previously split and we get an accuracy of 0.9438,

To find ships in the scene images we use a sliding window. A
sliding window approach has been implemented, where
overlapping tiles in each test imageare classified as ship ornon-
ship. In the detection process we get duplicated results as in
Figure 7. After this we remove duplicate detection and false
positive as in Figure 8. The saved detection is window with the
highest detection value.

1000
Figure 7. Duplicated detection

0

Figure 8. Final detection

B. CUNN

CNN gets better results than SVM when applied to this data set.
The CNN was trained with train/val split of 3200/800, an image
size of 80x80, 18 epoch. Loss and accuracy are calculated both
in training and validation at each epoch as in table 1.

TABEL [, ACCURATION RATE

Epoch Traming Validation
Loss | Accuracy | Loss | Accuracy
1 0.0388 0.9862 0.0778 0.9800
2 0.0342 0.9897 0.667 0.9800
3 0.0265 0.9903 0.0644 0.9812
4 0.0322 0.9884 0.0642 0.9800
5 0.0354 0.9897 0.0619 (1.9825
6 0.0544 09816 0.0521 0.9850
7 0.0287 0.9903 0.0705 (.9787
8 0.0265 0.9919 0.0656 (.9800
9 0.0262 0.9925 0.0822 0.9750
10 0.0257 0.9897 0.0634 (1.9775
11 0.0165 0.9937 0.0694 0.9762
12 0.0211 09919 0.0635 0.9837
13 0.0158 0.9947 0.0720 0.9812
14 0.0158 0.9950 0.0635 0.9850
15 0.0202 0.9934 0.0799 1.9812
16 0.0202 09916 0.1077 (1.9663
17 0.0166 0.9947 0.0657 (1.9812
18 0.0114 0.9962 0.0645 (.9825




From the plot at Figure 9 it can be seen that the loss value in
training and validation is quite small with an average of 0,0259
for training and 0, 1032 for validation. The loss has decreased in
almost every epoch for training. but in validation loss value was
high at epoch 16 and back down atepoch 17 and 18. In general
the more the number of epochs that are run, the smaller the loss
value obtained. At Figure 10 Accuracy of this model was high.
the average training accuracy is 0.9912 or 99.12% and the
validation accuracy is 0,9798 or 97.89%.
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Figure 9. Loss rate
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7 Test Image

The comparation of test result using high resolution satellite
images as bellow:

Method

used

SYM

Test Images

CNN

SVM

CNN

As can be seen above, CNN can detect ship objects better than
SVM when testing port views from high resolution satellite
images. Almost all ship objects in the picture can be detected
properly by CNN. Whereas in SVM there are many error
detection.




V. CONCLUSION

Detection of ships in satellite imagery successfully uses
machine learning and computer vision algorithms. By
comparing SVM and CNN on this data. it can be scen that CNN
has a higher accuracy and is considered better n detecting ship
objects.
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