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 Rainfall is one of the climatic elements in the tropics which is very 

influential in agriculture, especially in determining the growing 

season. Thus, proper rainfall modeling is needed to help determine 

the best time to start cultivating the soil. Rainfall modeling can be 

done using the Statistical Downscaling (SDS) method. SDS is a 

statistical model in the field of climatology to analyze the 

relationship between large-scale and small-scale climate data. This 

study uses response variables as a small-scale climate data in the 

form of rainfall and explanatory variables as a large-scale climate 

data of the General Circulation Model (GCM) output in the form of 

precipitation. However, the application of SDS modeling is known 

to cause several problems, including correlated and not stationary 

response variables, multi-dimensional explanatory variables, 

multicollinearity, and spatial correlation between grids. Modeling 

with some of these problems will cause violations of the 

assumptions of independence and multicollinearity. This research 

aims to model the rainfall in Indramayu Regency, West Java 

Province using a combined regression model between the 

Generalized linear mixed model (GLMM) and Least Absolute 

Selection and Shrinkage Operator (LASSO) regulation (𝐿1). 

GLMM was used to deal with the problem of independence and 

Lasso Regulation (𝐿1) was used to deal with multicollinearity 

problems or the number of explanatory variables that is greater than 

the response variable. Several models were formed to find the best 

model for modeling rainfall. This research used the GLMM-Lasso 

model with Normal spread compared to the GLMM model with 

Gamma response (Gamma-GLMM). The results showed that the 

RMSE and R-square GLMM-Lasso models were smaller than the 

Gamma-GLMM models. Thus, it can be concluded that GLMM-

Lasso model can be used to model statistical downscaling and 

solve the previously mentioned constraints.    
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1. Introduction  

Located in the tropical region, Indonesia becomes one of the world’s major agricultural nations 
that supplies various agricultural products, including rice as one of the prime products. Rice farming 
in Indonesia highly depends on climatic elements, especially rainfall. Rainfall is one of the climate 
elements in the tropics with significant variability and thus unpredictability. This condition urges the 
need to predict rainfall through statistical modeling to increase rice productivity in Indonesia. 

Statistical downscaling (SDS) can be classified as spatio-temporal modeling in the field of 
climatology because data can be collected from several locations and observed over time. SDS is a 
technique in climatology that uses statistical modeling to analyze the relationship between large-scale 
(global) data and small-scale (local) data. 

This research used the local scale data of rainfall as a response variable and General Circulation 
Model (GCM) output in the form of precipitation as an explanatory variable. The GCM output data 
has several problems, including multiple-dimensional explanatory variables, spatial correlation 
between grids, and multicollinearity between explanatory variables [14]. This problem can be solved 
by several methods, such as dimensional reduction, variable selection, and shrinkage in parameter 
estimation. An example of the dimensional reduction method is the principal component of analysis 
method. An example of the variable selection method and shrinkage coefficient that is often used is 
the lasso method. This method has advantage in selecting variables and estimating stable parameters 
[5]. 

Rainfall data can be measured periodically based on daily, weekly, and monthly seasons, such as 
rainy season and dry season, or annually with repeated measurements, such as months, which will 
result in mutually correlated data. Generalized Linear Model (GLM) is usually used to model rainfall 
data, but cannot handle some violations that occur both from response and covariates data. Therefore, 
it is necessary to expand the GLM model that can handle some of these constraints. This can be done 
by inserting random effects into linear predictors called Generalized Linear Mixed Models (GLMM) 
(also known as random effects models). Mixed effects models have become a popular approach to 
periodic and group data analysis emerging in diverse fields.  Several studies  have been conducted on 
rainfall, such as [14] analyzing precipitation prediction in the Daqing Mountains using the 
Multivariate Regression Model, and [6] on prediction of daily rainfall using Gamma and Weibull 
distributions in India, which gives a good fit. 

Research on SDS in Indonesia, among others, was conducted by [5] who carried out rainfall 
modeling using the distribution of the most compressed gamma and Pareto responses with lasso 
regularization. Furthermore, [3] conducted rainfall modeling using the gamma response distribution 
with elastic net regulation, while [6] used a Gaussian response distribution with a fused lasso penalty. 
Similarly, [5] conducted SDS modeling in the GLMM framework using the Gaussian response and 
lasso penalties. 

All in all, several models that have been developed for rainfall modeling have not considered 
violations of the independence assumption, while at the same time addressing the multicollinearity 
problem. Hence, this study proposes a model that is able to deal with the problem of violation of the 
independence and multicollinearity assumptions simultaneously, through a combined model between 

GLMM and Lasso penalty (𝐿1) on fixed effects called GLMM-Lasso. The GLMM-Lasso application 
is applied to statistical downsaling modeling with the response variable in the form of monthly rainfall 
in the Indramayu Regency from January 1981 to 2014 and the predictor variable from the GCM output 
in the form of precipitation obtained from the interpolation of a combination of surface and satellite 
observation data in the form of a grid from GPCP ( Global Precipitation Climatology Project) version 
2.2. The use of Lasso in the GLMM (GLMM-Lasso) model will reduce the complexity of the model. 
This method can be used for data with very large dimensions (High Dimensional Data), especially 
models that involve a very large number of predictors/independent variables [2] 
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2. Literature Review 

This section provides a brief overview about the exponential family, Gamma distribution, 

Generalized Linear Models, and their components for the benefit of building a regression model in 

GLM. 

2.1. Exponential Family 

A single random variable Y, which has a probability distribution that depends on one parameter θ 
has an exponential family distribution if written as follows: 

p(y;θ,ϕ) [
yθ-b(θ)

a(ϕ)
+c(y,ϕ)]         (1) 

p(y;θ,ϕ) : The probability function for a discrete or continuous random variable.  

b(.)      : Canonical parameter functions 

c(.)      : Normalization parameters 

a(ϕ)      : The dispersion parameter function  

θ=g(μ)  : Canonical parameter (location parameter). The link between the means of the data 

distribution with explanatory variables.  

ϕ>0       : Parameters related to the range of distribution are known as dispersion parameters (scale 
parameters). If ϕ is known, equation (1) is a family of one parameter exponential distribution. If ϕ is 
not known, equation (1) is a family of two-parameter exponential distribution [8]. 

2.2. Generalized Linear Model (GLM) 

Linear regression models usually use linearity to describe the relationship between the mean and 
the response variable and the set of explanatory variables with inference assuming that the distribution 
of responses is normal. The generalized linear model (GLM) is an extension of the standard linear 
regression model to deal with the distribution of non-normal responses and possible nonlinear 
functions for the mean. GLM is defined as the set of independent random variables Y1,….,Yn each 
with the distribution form of the exponential family and has the following 3 components: 

1. Random component: the distribution of each Yi has a canonical form and depends on one 
parameter θi  

2. Linear Predictor: the parameter vector β=(β1,β2,…..,βn)T and  n×p. Matrix Model X which 
contains the value of p predictor variables and n observation, linear predictor Xβ  

3. Link Function: g is a monotonous hybrid function, namely: the link function g connects the 
function E(Yi) with its predictor. 

g(μ
i
)=xi

Tβ               (2) 

where in, 

μi=E(Yi)           (3) 

where in, 

g(μ
i
) : A function that connects the expected observational data with a linear predictor 

xi
Tβ   : Linear predictor 

β : Regression parameters 

X : Predictor variables 

2.3. LASSO (Least Absolute Shrinkage and Selection Operator) 

The least absolute shrinkage and selection operator (LASSO) method was introduced by Tibshirani in 

1996.This method shrinks the regression coefficient of the predictor with high correlation to error, to 

almost zero or exactly zero by changing the penalty in the roll regression with the L1 norm (L1 

regularization)[12].  The following is the formula to give a penalty on Lasso with constraints: 
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∑ |β
j
|

p

i=1 ≤λ,  λ≥0         (4) 

The value of λ is the parameter controlling the LASSO coefficient shrinkage λ ≥ 0. If |βj|  is the least 

squares estimator and λ0= ∑ |β
i
|

p

i=1 , the value of λ<λ0 will cause the MKT solution to shrink towards 

zero and allow some coefficients to shrink to zero. Estimating coefficients using LASSO can be 

written in the lagrange equation L 

β̂
lasso

= argmin
β

{∑ (yi-β0
- ∑ β

j
xij

p

j=1 )
2

n
i=1 + λ ∑ |β

j
|

p

i=1 }  ,  λ ≥ 0    (5) 

 

Cross validation (CV) is a method that can be used to select the controlling parameter ("λ ") in 

regression. One type of cross validation is k-fold (k fold). 

2.4. Generalized Linear Mixed Model (GLMM) 

Suppose  yit is the observation t in cluster i, i=1, …., n, 𝑡 = 1, … , Ti in y
i
t= (y

iT1
,…, y

iTi
), 

xit
T=1,xit1

,….., xitp
 are covariate vectors, which are related to fixed effects and zit

T=1,zit1
,….., zitp

 are 

covariate vectors related to effects random. It is assumed that the conditional independent yit with 

mean μ
it
=E(bi,xit,zit) and the variance var (var(bi)=ϕv(μ

it
)  where v(.) is the known variance function 

and ϕ is the scale parameter. The GLMM form is as follows: 

g(μ
it

)=xit
Tβ+zit

Tbi=η
it

par
+η

it
rand         (6) 

g is a monotone function and the link function can be derived continuously η
it

par
=xit

Tβ is a linar 

parametric form with the parameter vector β
T
= (β

0
,β

1
,…,β

p
) including the intercept and 

ηit
rand=zit

Tbi contains a group-specific random effect where 𝑏𝑖~𝑁(0, 𝑄) with Q covariance matrix of 

size qxq. Thus, the alternative form of GLMM: 

μ
it
=h(η

it
), η

it
=η

it

par
+η

it
ran         (7) 

where h=g-1 is the inverse of the link function.  

In GLMM, it is assumed that the conditional density of y
it
 after the explanatory variable is given and 

the random effect 𝑏𝑖 and is an exponential family. 

 f(xit, bi)=exp {
(yitθit-k(θit))

ϕ
+c(y

it
,ϕ)}        (8) 

where θit=θ(μ
it

) is a natural parameter, k(θit) is a specific function depending on the type of 

exponential family, c(.) is a constant of log normal, and ϕ is a dispersion parameter.  

One method to maximize GLMM is the penalized quasi likelihood (PQL) (Breslow and Clayton 

(1993), Lin and Breslow (1996), and Breslow and Lin (1995)) [2]. The covariance matrix Q (ϱ) of the 

random effect bi depends on the unknown vector ϱ. In the basic penalized concept, the combined 

likelihood function is defined by the parameter vector of the covariance structure ϱ together with the 

dispersion parameter ϕ in γT=(ϕ, ϱT) and the parameter vector δ
T
=(β

T
,b

T) with the log likelihood 

function:                                     

 l(δ,γ)= ∑ log(∫ f(y
i
|δ,γ)p(bi,γ)dbi)

n
i=1        (9) 

where 𝑝(𝑏𝑖, 𝛾) is density of the random effect. On this basis, Breslow and Clayton(1993) derived the 

following approach:  
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l
app(δ,γ)= ∑ log log (f(δ,γ))-

1

2
b

T
Q(ϱ)-1bn

i=1        (10) 

In the form of a penalty b
T
Q(ϱ)-1b 

2.5. Generalized Linear Mixed Lasso Model (GLMMLASSO) 

Development of the GLMMLASSO method lies in the inclusion of a penalty λ ∑ |β
i
|

p

i=1  in equation  

(8), so the form of the penalized likelihood of Breslow and Clayton(1993) is as follows: 

l
pen(β,b,γ)=l

pen(δ,γ)=l
app(δ,γ)-λ ∑ |β

i
| 

p

i=1       (11) 

with γ̂ obtained by optimizing the function     

  δ̂=l
pen(δ,γ̂)=[lapp(δ,γ̂)-λ ∑ |β

i
|

p

i=1 ]       (12) 

The Penalty used in equation (11) and (12) is considered a partial penalized approach by taking 

into account all the parameter vectors used δ
T
=(β

T
,b

T). 

3. Generalized Linear Mixed Lasso Model for Statistical Downscaling Modelling 

This research used rainfall data of Indramayu Regency from January 1980 to 2014 as a response 
variable and GMC output in the form of precipitation denoted by pr as the predictor variable. 
precipitation is taken from the interpolated combination of surface and satellite observation data in the 
form of a grid from GPCP (Global Precipitation Climatology Project) version 2.2 and abbreviated as 
GPCP, used as big scale covariate. GPCP data were obtained from the NOAA / OAR / ESRL PSD, 
Boulder, Colorado, USA, via its website at http://www.esrl.noaa.gov/psd/. The covariate data were 
taken in the 7 × 7 grid domain (49 covariates) in the coordinate system 101.25◦ - 116.25◦ EL and 
13.75◦ LS - 1.25◦ NL with a grid width of 2.5◦ x 2.5◦. In this position, Indramayu Regency is located 
below the middle grid of the selected area (Figure 1). 

 

Fig. 1. Covariate Domain 

Fig. 1. Shows that the Precipitation variable consists of 49 precipitation variables represented by 

pr11, pr12, pr13, .... pr77. where each of the precipitation variables to represent the position of 

precipitation in the grid row-i, and column j with i = 1,2,3,4,5,6,7 and j = 1,2,3,4,5, 6,7. The influence 

of precipitation on the response variable to monthly rainfall in Indramayu Regency from to April 2014 

can be seen in the two SD modeling scenarios that we created, namely: 

1. GLMM-Lasso with a Gaussian distributed response, the link function used is identity. Because 

the form of rainfall generally follows the Gamma distribution pattern without involving a value 

of 0, but sometimes rainfall does not occur, the Gaussian distribution is considered so that the 

value of 0 and continuous positive can still be modeled. Rainfall data is time series data which 

is generally not stationary, so it is necessary to compare it with standardized data modeling. 
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Generalized Linear Mixed Model Lasso (GLMM-Lasso) in this study uses two cases, namely 

with standardized and non-standardized responses. Each case has 2 models tested, namely the 

random effects of seasons and months, different random effects are considered to see better 

rainfall patterns when viewed based on seasonal or monthly random effects. 

2. GLMM models with random effects of months and seasons on different models. The 

distribution used is Gamma. 

The two model scenarios above will be compared to see the best model. the best model is selected 

by selecting the smallest RMSE value and the largest R-square 

Table 1.  Research Variable 

Variable Name of Variable Information 
Response Rainfall | Seasonal(M=m) 

Rainfall | Monthly(B=b) 

Consist of 347 rainfall observations with a continuous 

measurement scale 

Covariate Precipitation   Pi   i=1,2,….,49 Consist of 49 covariates (precipitation) came from 

pr11,pr12, p17,p21,....pr77 

Random effect 1 Seasonal Mj   j=1,2 Consist of 2 season levels 

1=Summer (April-August) 

2=Rainy (September-March) 

Random effect 2 Monthly    Bk   k=1,2,…..,12 Consist of 12 month levels, namely January- December 

Note : Precipitation can be abbreviated as “pr” 

4. Results and Discussion 

GLMM is applied to rainfall data divided into 2 cases, namely the rainfall response variable 
without standardization and the variable rainfall response with standardization. In each case there are 
two models for the model with seasonal and month random effects. The purpose of this study is to 
determine the precipitation that has an influence on rainfall in Indramayu district. 

GLMMLasso Model in the case of 1 and 2 (M=m) ~ N(μ,σ2) 

Random effect of seasonal 

η
ij
=μ+Pi+Mj      (13) 

Random effect of monthly 

η
ij
=μ+Pi+Bk       (14) 

with : 

M~ N(0,σM
2 ) , B~ N(0,σB

2 )                 

Where in, Pi is precipitation , Mj is seasonal random effect, Bk is monthly random effect.  

4.1. Statistical Downscaling Modelling with GLMM-Lasso with several cases 

4.1.1.Case 1 GLMM-Lasso Model Rainfall Response variable without Standardization 

The first case is divided into two models to be compared, namely a model with seasonal random 
effect and month random effect. In each model, analysis was carried out with different lambda values, 
namely 30,500,1372,2000, 5000 and 10000. So that: 

Table 2.  RMSE dan R Square of Rainfall data 

λ 
RMSE  |R Square 

Yi|seasonalj 

RMSE  |R Square 

Yi|monthly
j
 

30 124.796 (42.493) 124.796(42.490) 

500 129.233(38.332) 126.781 (40.649) 
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1372 135.097 (32.608) 137.308 (30.383) 

2000 133.261(34.427) 132.404 (35.268) 

5000 137.939(29.743) 135.826 (31.878) 

10000 150.752(16.084) 150.933 (15.882) 

 

In Table 2, it can be seen that the smallest RMSE and the largest R Square value for both models 
occurs when the lambda is 30, namely 124.796 and 42.49%, respectively. This value means that all 
the covariates in models 1 and 2 can explain 42.49% of the diversity of monthly rainfall in Indramayu 
Regency collectively. 

The effect of adding the constraint l1  to the fixed effect parameter to the likelihood function 
equation in each model can be seen in the estimation results of the regression coefficient which shrinks 
to zero. The results of the estimated regression coefficient parameters are presented in Figure 1. Fig. 
1 shows that there is no significant difference between the two models for the several values of λ used. 
The greater the value of λ, the smaller the regression coefficient to zero and vice versa. The lambda 
value specified is λ = 10000, which is the largest λ value, while λ = 30 is the smallest λ value. 

  
(a) (b) 

Fig. 2. Plot of Covariate Coefficient of Rainfall Data for Model Seasonal (a)  and Monthly Random 

Effect (b) 

To check the error of the model whether it meets the assumptions, independent error, 
homoscedasticity or constant variance, the normal distribution error is presented in Fig 2, 3 and 4. We 
checked the assumption whether the constant variance error was met or not, and the results is shown 
in Fig. 2, namely the plot between the residual values versus the lunar index of model 1. 
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(a) (b) 

Fig. 3. Plot of  Residual Vs Monthly Index of Rainfall Data with Seasonal Random Effect (a)  

and Monthly Random effect (b) 

 
 Fig 3 shows that the residuals spread around zero and have a random pattern even though there 

are very high and small residual values. This result indicates that the independent error assumption 
can be satisfied by the residual GLMM-Lasso. In addition, because the error is also assumed to be 
independent and have a normal distribution, we checked whether these assumptions were met by 
constructing a residual versus monthly index plot and a normal Q-Q plot of the residuals of models 1 
and 2. 

  

(a) (b) 

Fig. 4.  Estimating Y plot Vs Residual Data for  Model with Seasonal Random Effect (a)  and 

Monthly Random Effect (b) 

 Based on Fig 4, there is no significant difference between the two methodsIn other words, there 

is no certain trend or pattern so that the assumption of constant error variance can be fulfilled by the 

two models. In Fig 5, it can be seen that the assumption of normally distributed errors is not fulfilled, 

especially for residual values above the normal line. 
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(a) (b) 

Fig. 5. Q-Q Norm Rainfall Data for Model with Seasonal Random Effect (a) and Monthly Random 

Effect (b) 

4.1.2. GLMMLasso Model with Standardized Rainfall Response Variable 

Case 2 is different from case 1, since the latter is without standardization of the response variable. 
Thus, in case 2, a standardized response variable was performed. There are 2 models to be compared, 
namely a model with seasonal random effect and moon random effect. For each model, analysis was 
carried out with different lambda values, namely 30,500,1372,2000, 5000 and 1000. 

Table 3.  RMSE and Rsquare of Rainfall data 

λ 
RMSE  |Rsquare 

Yi|seasonalj 

RMSE  |Rsquare 

Yi|monthly
k
 

30 121.3515 (44.61005) 119.992 (45.8442) 

500 122.7617 (43.31526) 121.6191 44.36549) 

1670 137.2613 (29.13411) 130.5941 (35.85127) 

200 182.6518 (25.48407  ) 189.0333 (34.40557) 

5000 129.2655 (37.1499) 129.4643 (36.95642) 

10000 140.8905 (25.33727) 140.8905 (25.33727) 

 

In Table 3, we can see that the RMSE value of the two models has a value similar to the 30 lambda, 
and the smallest RMSE values are 121.3515 and 119.992. For the R Squared value of the two models, 
it is found that the lambda 30, the R Squared value of the two models, is the greatest value of all 
lambda, namely 44.61005% and 45.8442%. This result means that all covariates in models 1 and 2 
can explain the 44.61005% and 45.8442% variations of the monthly rainfall in Indramayu Regency. 
Thus, from the two models, it is found that model 2, the model with the moon random effect, has the 
smallest RMSE and the largest Rsquare. 
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(a) (b) 

Fig. 6. Plot of Covariate Vs Coefficient of Rainfall Data with Seasonal Random Effect (a) and 

Monthly Random Effect (a) 
 

 The likelihood function in each model is with the expectation that most of the regression 
coefficient shrinks to the value of Zero. Thus, it can be seen in Figure 1 that there is no significant 
difference between the two models for some differences in the value of λ. The greater the value of λ, 
the more shrinkage the regression coefficient to a value of 0 and vice versa with value of λ = 10000 
as the largest specified value of λ and λ = 30 as the smallest lambda value. In contrast to case 1, in 
case 2, the value of λ = 2000 was not able to make the regression coefficient shrinkage. 

To check the error of the model, whether it meets the assumptions, independent error, 
homoscedasticity or constant variance, the normal distribution error is depicted in Figures 6, 7 and 8. 
We checked the assumption whether the constant variance error is met or not, and the result is 
presented in Figure 2, namely the estimation of plot between the y values  versus residuals of models 
1 and 2. In Figure 2, the residuals spread around 0 and already have a random pattern even though 
there are very high and small residual values. This result indicates that the independent error 
assumption can be satisfied by the residuals by both models. In addition, because the error is also 
assumed to be independent and have a normal distribution, we checked whether these assumptions 
are met, by constructing a residual versus monthly index plot and a normal Q-Q plot of the residuals 
of models 1 and 2 in Fig 7 and 8. 

Based on Fig 7, the two methods do not have a significant difference. In other words, there is no 
certain trend or pattern so that the assumption of constant error variance can be met by the two models. 
In Figure 8, it can be seen that the normal distribution error assumption is not fulfilled, especially for 
residual values above the normal line. 
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(a) (b) 

Fig. 7. Residual Vs Montly Index of Rainfall Data for The model with Seasonal Random Effect (a) 

and Monthly Random Effect (b) 

  

(a) (b) 

Fig. 8.  Estimate Y Plot Vs Residual Rainfall Data for The model with Seasonal Random Effect (a) 

and Monthly Random Effect (b) 
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(a) (b) 

Fig. 9. Q-Q Norm of Rainfall Data for Seasonal and Monthly Random Effect 

3.1. Model-Based Precipitation Grid Map 

The following is a map of the allowance grid based on models 1 and 2  to see the performance of 
models with different lambda values. 

 

Fig. 10. Grid Map for Seasonal Random Effect of Model 1 
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Fig. 11. Grid Map for Monthly Random Effect of Model 2 
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           Information: 

 

 

Fig. 12. Grid Map for Monthly Random Effect of Model 1 

 

 

Fig. 13. Grid Map for Seasonal Random Effect of Model 2 

 

Active Non active 
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Fig. 14. Grid Map for Monthly Random Effect of Model 2 

From Table 4, and 5, it can be seen that the greater the lambda value used, the more likely the 
regression parameter will  to shrink to zero. The white mark of the number of grid maps indicates that 
the regression coefficient tends to be 0 or close to 0. For table 6, and 7, lambda can make the shrinkage 
regression coefficient to a value of zero or close to that when the maximum lambda used is 1670. 

Table 4.  Percentage of Active Regression Coeficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 shows that the percentage of active regression coefficients denotes that the coefficient is 
valued other than zero, while non-active means that the regression coefficient is zero or close to this 

Model 1 (Seasonal Random effect) (%) 

Covariate 30 500 1372 2000 5000 10000 

 Non-active 2.04 6.12 36.73 46.9 26.53 48.98 

Active 97.96 93.88 63.27 53.1 73.47 51.02 

Model 1 (Monthly Random effect) (%) 

Covariate 30 500 1372 2000 5000 10000 

Active 2.04 10.2 34.69 51 38.78 36.735 

Non-active 97.96 89.8 65.31 49 61.22 63.265 

Model 2 (Seasonal Random effect) (%) 

Covariate 30 500 1670 2000 5000 10000 

Active 97.96 85.71 53.06 95.9 83.67 67.347 

Non-active 2.041 14.29 46.94 4.08 16.33 32.653 

Model 2 (Monthly Random effect) (%) 

Covariate 30 500 1670 2000 5000 10000 

Active 97.96 87.76 57.14 95.9 83.67 59.184 

Non-active 2.041 12.24 42.86 4.08 16.33 40.816 
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value. Each data analysis using different lambda Model 1 on different random effects also indicates 
an increase. If the lambda value is used, the regression coefficient tends to make the regression 
coefficient zero or close to 0. Of the two models, when the maximum lambda is used, the inactive 
regression coefficient looks a lot, almost proportional to the value of lambda = 10000. 

Next, we ummarized the output results for the smallest RMSE and the largest R-square, then 
compared the result to the GLMM Gamma response model. 

Table 5.  Comparison of RMSE and Rsquare Across Models 

Model 

GLMM-Lasso 

Model1 

(Seasonal/monthly) 

GLMM-Lasso 

Model2 

(Monthly) 

Gamma-GLMM 

(Seasonal) 

Gamma-GLMM 

(Monthly) 

RMSE 124.796 

 

119.992  

 

133.113 130.450 

Rsquare 42.492 45.844 34.572 37.164 

 

 

Table 5 is a summary of the RMSE and R Square of all models. For models 1 and 2, we used a 
regression model with the smallest RMSE value and the largest Rsquare. From the four models, it can 
be seen that the GLMMLASSO model is better than the usual GLMM. This is because GLMM is less 
stable in handling regression models with too large value of covariates. When it is applied using 
GLMM, there will be a warning that the data has a covariate variable of > 12. 

5. Conclusion 

From the explanation and model application in the previous sub chapters, it can be concluded that 
GLMMLasso models generally perform better than regular GLMM models. The GLMMLasso model 
can be used for Statistical Downscaling Modelling since it can overcome some of the constraints faced 
in the application, such as correlated response variables and violations of independence assumption. 
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