
 

https://journal.uii.ac.id/ENTHUSIASTIC  p-ISSN 2798-253X  
  e-ISSN 2798-3153 

   

 

ENTHUSIASTIC 
INTERNATIONAL JOURNAL OF APPLIED STATISTICS AND DATA SCIENCE 

V olum e  3 ,  I s su e  2 ,  O c tobe r  2023 ,  pp .  1 3 9 -1 5 0  

Modeling and Forecasting Volatility in USD/GBP Exchange 
Rate 

Niswatul Qona’ah a,1,* 
a Statistics Study Program, Universitas Sebelas Maret, Jl. Ir. Sutami No.36, Surakarta, 57126, Indonesia  
1 niswatulqonaah@staff.uns.ac.id* 
* Corresponding author 

ARTICLE INFO 
 

ABSTRACT  
 

Keywords 
Arima 
Exchange rate 
Forecasting 
Garch 
Volatility 

 Rate changes can occur hourly, daily, or in large incremental shifts. 
These changes may impact firms by changing the cost of commodities 
imported from other countries and the demand for their goods among 
foreign consumers. Therefore, it is essential to forecast exchange rates 
to manage this business effect. This study aims to determine the best 
model for predicting volatility in the exchange rate between USD and 
GBP. In particular, we analyze exchange rates using the Autoregressive 
Integrated Moving Average (ARIMA) model and the volatility or 
variance model by Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH). To determine the best model, the 
performance of each model is evaluated with several criteria, namely 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 
Mean Absolute Percentage Error (MAPE). The results show that 
EGARCH(1,1) has the best forecasting performance in the out-sample 
section because it can better capture out-sample data patterns with 
minimum RMSE, MAE, and MAPE.    

 

  

1. Introduction   
In finance, the exchange rate refers to the price at which one currency will be exchanged for 

another. The value of one country’s currency with respect to another is also thought of as the 
exchange rate [1]. For instance, if the interbank exchange rate between the British Pound (GBP) and 
the US dollar (USD) is 0.78, it indicates that either £0.78 will be exchanged for $1 or $1 will be 
exchanged for £0.78. In this instance, it is said that the price of a dollar is £0.78 for a pound or that 
the price of a pound is $1/0.78 for a dollar. 

The economic activity, market interest rates, gross domestic product, and unemployment rate in 
each country frequently influence how much one currency will swap for another. They are 
established in the global financial market, where banks and other financial institutions trade 
currencies round-the-clock depending on these criteria and are known as market exchange rates. Rate 
changes may occur hourly, daily, or in big incremental shifts. This alteration may impact the 
company by altering the cost of commodities imported from another nation and the demand for their 
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goods among foreign consumers [2]. Hence, it is important to forecast the exchange rate for 
managing this business effect. 

Exchange rate forecasting is challenging for academic researchers and business practitioners. 
Various models and time series approaches have been suggested to model and forecast the exchange 
rates. Unfortunately, empirical results often fail to meet theoretical expectations. Meese and Rogoff 
[3] show that the out-sample performance of many structural and time series models is no better than 
that of a simple random walk model. Their findings discourage many researchers in the area since 
the superiority of the random walk means unpredictability of the exchange rate. However, the models 
investigated in [3] are linear. Meanwhile, exchange rate data contain nonlinearities that linear models 
may not approximate well.  

Exchange rate data usually include floating and volatility models. The floating component is 
always modeled using a mean model, such as the Autoregressive Integrated Moving Average 
(ARIMA) model class. The volatility is a nonlinearity form in variance that can be modeled using 
Autoregressive Conditional Heteroscedasticity (ARCH) or Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH). Most volatility in business and economic data is influenced by stylized 
facts. The stylized facts that significantly impact modeling financial time series are fat tails, volatility 
clustering, and nonlinear dependence. It may influence the forecasting performance of the mean 
model [4]. Furthermore, GARCH is a time series model most applied in volatility [5]. 

This study aims to determine the best model for the exchange rates between USD and GBP 
forecasting. Specifically, we analyze the exchange rate using the mean model belonging to ARIMA 
and the volatility or variance model by GARCH. In order to determine the best model, the 
performance of each model is evaluated by some criteria, i.e., Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). 

2. Method 
We now describe ARIMA as the mean model and GARCH as the volatility model for exchange 

rate forecasting. 

2.1. Autoregressive Integrated Moving Average (ARIMA) 
The ARIMA model is a method widely used for analyzing and forecasting time series data. This 

model was shown in published by Box and Jenkins in 1970. ARIMA is constructed by three parts, 
i.e., AR (autoregressive part), I (integrated part), and MA (moving average part). In order to estimate 
the ARIMA model, we have to follow four steps, including model identification, model estimation, 
diagnosis checking, and forecasting [6]. 

a. Model Identification 
• As introduced above, ARIMA includes three parts. We denote the order of AR part as 𝑝, I 

part as 𝑑, MA part as 𝑞, hence we have ARIMA (𝑝, 𝑑, 𝑞). In order to apply the ARIMA model, 
we have to define 𝑝, 𝑑, 𝑞 first.   

• The stationary test of a time series can define the integrated part of the model. If the time 
series integrates at level 0, we have I (𝑑 = 0). If the time series integrates at level 1, we have 
I (𝑑 = 1). The popular method used for stationary tests is Dickey-Fuller. 

• After the stationary test, we define 𝑝 and 𝑞 using the autocorrelation function (ACF) and 
partial autocorrelation function (PACF).  

• AR model order p represents the observation at time t which is linearly related to previous 
time observations 𝑡 − 1, 𝑡 − 2,… , 𝑡 − 𝑝. The equation form of the AR (p) or ARIMA (p,0,0) 
model can be written as 

𝑦! = 𝜇 + 𝜙"𝑦!#" + 𝜙$𝑦!#$ +⋯+ 𝜙%𝑦!#% + 𝑒! (1) 
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where, 𝜙", 𝜙$, … , 𝜙% is the autoregressive parameter, 𝑒! is the error value at time t, and 𝜇 is a 
constant. 

• The MA model describes an event where an observation at time t is expressed as a linear 
combination of a number of residuals. The equation for MA(q) or ARIMA (0,0,q) model can 
be written as 

𝑦! = 𝜇 + 𝑒! − 𝜃"𝑒!#" − 𝜃$𝑒!#$ −⋯− 𝜃&𝑒!#& (2) 

where 𝜃", 𝜃$, … , 𝜃& is the moving average parameter, 𝑒! is the error value at time t, and 𝜇 is a 
constant. 

• ARMA model is a combination of AR and MA models that can be written in ARMA notation 
(p, q) or ARIMA (p,0,q). The equation of the ARMA model on the order p and q can be 
written as 

𝑦! = 𝜇 + 𝜙"𝑦!#" + 𝜙$𝑦!#$ +⋯+ 𝜙%𝑦!#% + 𝑒! − 𝜃"𝑒!#" − 𝜃$𝑒!#$ −⋯− 𝜃&𝑒!#&(3) 

• A common equation that represents non-stationary time series is the ARIMA (p,d,q) model, 
which can be written as 

51 − 𝜙"𝐵 − 𝜙$𝐵$ −⋯− 𝜙%𝐵%7(1 − 𝐵)'𝑦! = 51 − 𝜃"𝐵 − 𝜃$𝐵$ −⋯− 𝜃&𝐵&7𝑒!(4) 

where,  𝜙", …𝜙% is the parameter of AR model; (1 − 𝐵)' is differencing level; 𝑦! is the 
forecast value of period t; 𝜃", … , 𝜃& is the parameter of MA model; and 𝑒! is the residual value 
of period t. 

b. Model Estimation 
Estimating the parameters for Box–Jenkins models involves numerically approximating the 
solutions of nonlinear equations. For this reason, it is common to use statistical software designed 
to handle the approach – virtually all modern statistical packages feature this capability. The 
main approaches to fitting Box–Jenkins models are nonlinear least squares and maximum 
likelihood estimation. Maximum likelihood estimation is generally the preferred technique [7].  

c. Diagnosis Checking 
Model diagnostics for Box–Jenkins models is similar to model validation for nonlinear least 
squares fitting. The error term is assumed to follow the assumptions for a stationary univariate 
process. The residuals should be white noise (independent when their distributions are normal) 
drawings from a fixed distribution with a constant mean and variance. If the Box–Jenkins model 
is good for the data, the residuals should satisfy these assumptions. If these assumptions are not 
satisfied, we must fit a more appropriate model. That is, return to the model identification step 
and try to develop a better model. One way to assess if the residuals from the Box–Jenkins model 
follow the assumptions is to generate statistical graphics (including an autocorrelation plot) of 
the residuals. We could also look at the value of the Box-Ljung statistic [8]. This test is 
sometimes known as the Ljung–Box Q test, can defined as: 

𝐻(: The error term is independently distributed (the correlations in the population from which 
the sample is taken are 0, so that any observed correlations in the data result from the 
randomness of the sampling process / white noise). 
𝐻": The error term is not independently distributed; it exhibits serial correlation (not white 
noise). 

The test statistic is 

𝑄 = 𝑛(𝑛 + 2)∑ )*!
"

+#,
-
,."   
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where 𝑛 is the sample size, 𝜌=, is the sample autocorrelation at lag 𝑘, and ℎ is the number of lags 
being tested. Under 𝐻(, the statistic 𝑄 asymptotically follows a 𝜒(-)$ . For significance level 𝛼, 
the critical region for rejection is 

𝑄 > 𝜒"#1,-$    

where 𝜒"#1,-$  is the (1 − 𝛼)-quantile of the chi-squared distribution with ℎ degrees of freedom 
[7]. 

d. Forecasting 
After step 3, if the model is suitable, we continue forecasting by using the model chosen. 

2.2. Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 
Since financial markets data often exhibit varying volatility, AR and MA models, that assume 

the conditional variances are constant, cannot capture the nonlinear dynamics. Linear models are 
unable to explain characteristics like volatility clustering, leverage effects, leptokurtosis and long 
memory in financial series [9]. Thus, we can employ a method to model nonlinear patterns as non-
constant volatility. Autoregressive conditional heteroscedasticity (ARCH) and its derivative models 
are popularly utilized in modeling and forecasting asset dynamics. The Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) (p,q) model allows for both autoregressive (AR) and 
moving average (MA) components in the heteroskedastic variance. This type of model aims to 
develop a volatility measure that can be used in financial decision-making. The GARCH model 
expresses the variance as 

𝜎!$ = 𝛼( + ∑ 𝛼3𝜀!#3$&
3." + ∑ 𝛽4𝜎!#4$%

4."   (5)	

where 𝜎!$ is conditional variance, 𝜀! is return residual and 𝛼(, 𝛼3, 𝛽4 are parameters to be 
estimated. The necessary condition for the positive variance is nonnegative value of 𝛼(, 𝛼3, 𝛽4 
parameters, and 𝛼3+𝛽4 is expected to be less than 1 for the model. In financial data series analysis, 
higher values of 𝛼3 coefficient implies a higher reaction of volatility to market shocks, while higher 
values of 𝛽4 coefficient shows the persistence of market shocks. 

Brooks and Burke [10] recommend that the GARCH (1,1) model is sufficient to capture the 
volatility clustering in financial data. In this report, we use GARCH (1,1), with (6) for mean and (7) 
for variance. 

𝑟! = 𝜇 + 𝜀!  (6) 

𝜎!$ = 𝛼( + 𝛼"𝜀!#"$ + 𝛽"𝜎!#"$   (7) 

where  𝑟! is the return at time 𝑡, 𝜇 is the average return and 𝜀! is the residual return. Since 𝜎!$ is 
the variance at time 𝑡 based on the past information at time 𝑡 − 1, it is called conditional variance. 
The conditional variance in (7) is a function of three variables, i.e., a constant term (𝛼(), volatility 
news at the previous period (𝜀!#"$  or ARCH term), and the variance previous period (𝜎!#"$  or GARCH 
term). That means the conditional variance of 𝜀 at time 𝑡 depends not only on the news about 
volatility from the previous period, but also on the last period conditional variance [11]. 

If the AR polynomial of the GARCH representation in (7) has a unit root, then we have an 
Integrated (IGARCH) model. Thus, IGARCH models are unit-root GARCH models. An IGARCH 
(1,1) variance equation can be written as 

𝜎!$ = 𝛼( + 𝛼"𝜀!#"$ + (1 − 𝛼")𝜎!#"$   (8) 

The EGARCH or Exponential GARCH model was proposed by Nelson [12]. This model allows 
for asymmetric reaction of conditional variance to shocks. The specification conditional variance of 
EGARCH (1,1) is 
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𝑙𝑜𝑔 𝜎!$ = 𝛼( + 𝛼" KL
5#$%
6#$%

L − M$
7
N + 𝛽" 𝑙𝑜𝑔 𝜎!#"$ + 𝛾"

5#$%
6#$%

 (9)	

where γ denotes leverage effects, which accounts for the asymmetry of the model. If γ < 0 it 
means negative shocks (bad news) generate more volatility than positive shocks (good news), 
however, γ > 0 means positive news is more destabilizing than negative ones. γ = 0 shows the model 
to be symmetric. Since log 𝜎!$ may be negative, there are no sign restrictions for the parameters. 

2.3. Model Evaluation 
The performance of forecasting models is evaluated using four measures: RMSE, MAE, and 

MAPE, which are calculated using the following equations. 

𝑅𝑀𝑆𝐸 = M∑ (9##9:#)&
#'%

"

;
	 	 (10)	

𝑀𝐴𝐸 = M∑ |9##9:#|&
#'%

;
	 	 (11)	

𝑀𝐴𝑃𝐸 = "
;M∑ L9##9:#

9#
L;

!." 	 	 (12)	

where 𝑇 is the number of total observations, 𝑦! and  𝑦=! is the actual and forecast value at time 𝑡, 
respectively, 𝑡 ∈ 𝑇. When comparing among models, the smallest RMSE, MAE, and MAPE are 
chosen as the best accurate forecast model. 

3. Results and Discussion 
We use a daily close exchange rate of USD to GBP over the period January 1, 2018 – December 

1, 2022 or 1284 days. The data is obtained from the Yahoo finance website. For analysis, we divide 
the data into two parts, i.e., 1250 days for the in-sample part and 34 days for the out-sample part. We 
use in-sample part data to identify the model and estimate the model and out-sample part to evaluate 
the model. 

3.1. Descriptive Data 
First, we describe the in-sample part of the original data. There is 1 missing value among 1,250 

of the total number of observations and the other descriptive statistics can be shown in Table 1. 
Table 1. Descriptive Statistics of Daily Original Data 

Total 
Obs. 

Number of 
Missing 
Value 

Minimum Maximum Mean Variance Kurtosis Skewness 

1250 1 0.6972 0.9322 0.767 0.0015 1.0498 0.8050 

Since there is one missing value in the original data, we investigate the location of the missing 
value. Hence, we can use plot series data to view the pattern of data and the location of missing 
values. 
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Fig. 1 Plot original in-sample data. 

Fig. 1 is the plot of the original in-sample data. The left-hand panel shows the data series with 
the missing value signed by a red circle, by using the R code we got the missing is on May 22, 2019. 
Furthermore, we do imputation to missing value with the value around the previous and after the 
missing period. The right-hand panel shows the series plot without missing values. In addition, we 
can see that the data pattern is very fluctuating, there is a downward trend over the period of the mid-
2020 and then it is going to an upward trend starting from mid-2021 up to the end of 2022. Besides 
that, some clusters of volatility can be shown in the plot. It indicates that the data is not a stationary 
process. 

3.2. Fitting ARIMA Model 
According to Fig. 1, we can see that the data is not a stationary process. In order to make it 

stationary, we can apply the first differencing to the data. The result of the stationary test is presented 
in Table 2 and the plot of the first differencing data is shown in Fig. 2. 

Table 2. The Result of the Stationary Test 

Data Dickey-Fuller Lag order P-Value 
Original -0.9352 10 0.9492 
First Differencing -12.0240 10 <0.01* 

*) Reject the null hypothesis 

 
Fig. 2 Plot of first differencing data. 
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Table 2 presents the result of the Augmented Dickey-Fuller (ADF) test. The null hypothesis of 
this test is that there is a unit root in the data series (not a stationary process). At the same time, the 
alternative hypothesis is that the data series is a stationary process. The result shows that the original 
data is non-stationary because the p-value is larger than α = 0.05. On the contrary, the first 
differencing data is a stationary process because the p-value is less than α = 0.05. It is also shown in 
Fig. 2, that the first differencing data series look stationary and fluctuates around 0. 

The next step is identifying the ARIMA model visually using ACF and PACF plots. The ACF 
and PACF plot is presented in Fig. 3 and Fig. 4. 

  
Fig. 3 ACF and PACF plot for original data. 

  
Fig. 4 ACF and PACF plot for first differencing data. 

Fig. 3 shows ACF and PACF plots for the original data. In the left-hand panel, the ACF plot 
shows a prolonged decay. It indicates that the data might have influenced the current data long ago 
and shows that the data series is a non-stationary process. Since the data is not a stationary process, 
we consider ACF and PACF plots in Fig. 4 to identify a model for a non-stationary process. The 
order of the integrated (I) part is one because we only have the first difference. ACF plot in the left-
hand panel of Fig. 4 almost looks like white noise, but there is a little bit cut off for lag one and lag 
2. In the right-hand panel of Fig. 4, the PACF plot also almost looks like white noise, but we can also 
see a cut-off for lag 1 and 2. For this reason, we consider choosing ARIMA (2,1,2) as the candidate 
model. Besides that, we also apply the ‘auto. arima’ function in R code to consider another candidate 
model. The candidate model from ‘auto. arima’ function is ARIMA (0,1,2). Furthermore, the 
estimation parameter of model candidates is presented in Table 3. According to the Table 3, the 
candidate models can be written as 

ARIMA (0,1,2) 	(1 − 𝐵)𝑦! = (1 − 0.0554𝐵 − 0.0651𝐵$)𝑒!	 	
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ARIMA	(2,1,2)	 (1 − 1.6057𝐵 + 0.8545𝐵$)(1 − 𝐵)'𝑦! = (1 + 1.5397𝐵 − 0.7912𝐵$)𝑒! 

Table 3. Parameter Estimates of ARIMA Models 

Parameter Estimates 
Model 

auto.arima à ARIMA 
(0,1,2) 

ARIMA (2,1,2) 

AR 1 - 1.6057 
AR 2 - -0.8545 
MA 1 0.0554 -1.5397 
MA 2 0.0651 0.7912 

After we get the estimation of model candidates, the next step is diagnosis checking. The aim of 
diagnosis checking is to see whether the residuals follow the white noise process or meet the 
assumption of 𝐼𝐼𝐷𝑁~(0, 𝜎$). For this objective, we use the L-Jung Box test and the results are 
presented in Table 4. 

Table 4. L-Jung Box (White Noise) Test Results 

Model 𝑸 Test Statistic Degrees of Freedom P-Value 
auto.arima à 
ARIMA (0,1,2) 

0.000429 1 0.9835 

ARIMA (2,1,2) 0.363430 1 0.5466 

Table 4 shows the L-Jung Box Test for the residuals of model candidates. The null hypothesis is 
that the residuals are white noise. We can see that the p-value of both model candidates is larger than 
α=0.05. It means both model candidates have the white noise residuals and are good models. Thus, 
we can consider these two models to forecast USD to GBP exchange rate.  

However, Fig. 1 also informs us that there are multiple volatility clusters in the original data set. 
Because the ARIMA model is included in the linear model. It could be that ARIMA is unable to 
capture nonlinear patterns in the data. Hence, for the next part, we use GARCH as an alternative 
method to overcome volatility in the data series. 

3.3. Fitting GARCH Model 
As we mentioned in the previous part, data series have multiple volatilities. To estimate the 

volatility model, the mean return in equation (6) is first estimated to get the residuals. Then, squared 
residuals series and conditional variance are regressed on their lags and utilized to test the ARCH 
effect. The statistic descriptive of daily return data is presented in Table 5.  

Table 5. Descriptive Statistics of Daily Return Data 

Total 
Obs. 

Number of 
Missing 
Value 

Minimum Maximum Mean Variance Kurtosis Skewness 

1249 0 -0.0303 0.0423 0.0001 0.000003 5.7483 0.3462 

According to Table 5, we can see that there is excess kurtosis in daily returns, which is 5.7483 
larger than the normal value of 3. This can explain why heavier tails exist in the data and are 
distributed as leptokurtic. In other words, it may indicate that there is an ARCH effect. Thus, we can 
use the ARCH Lagrange-Multiplier (LM) test to check if there is an ARCH effect or not. The result 
of testing is reported in Table 6. 

Table 6. ARCH-LM Test Results 

𝝌𝟐 Degrees of Freedom P-Value 
12.615 1 0.00038 

 Table 6 shows the result of ARCH-LM test, the null hypothesis is that there is no ARCH effect. 
The result of this test is rejecting the null hypothesis because the p-value is less than 𝛼 = 0.05. It 
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means there is an ARCH effect so we can use the GARCH model. Furthermore, we estimate GARCH 
parameters and obtain the ARMA mean equation. Estimation results are reported in Table 7. 

Table 7. Estimation Results of GARCH Models  

Parameter 

GARCH(1,1) ARMA(1,1)-
GARCH(1,1) 

ARMA(2,2)-
GARCH(1,1) 

Coef. Prob. Coef. Prob. Coef. Prob. 
Mean Equation 

𝜇 0.000076 0.600 0.00008 0.537 0.00007 0.627 
𝐴𝑅(1)   0.89179 0.000 -0.9998 0.000 
𝑀𝐴(1)   -0.9029 0.000 1.00404 0.000 
𝐴𝑅(2)     -0.9863 0.000 
𝑀𝐴(2)     0.9998 0.000 

 Variance Equation 
𝛼) 0.000002 0.039 0.000002 0.021 0.000002 0.009 
𝛼* 0.097817 0.000 0.096922 0.000 0.097176 0.000 
𝛽* 0.845202 0.000 0.844473 0.000 0.842340 0.000 
𝛾       

𝛼* + 𝛽* 0.943019 0.941395 0.939516 
𝐿 − 𝐽𝑢𝑛𝑔 
𝐵𝑜𝑥 0.2659 0.6061 0.2524 0.6154 0.1563 0.6926 

Parameter 
I-GARCH E-GARCH 
Coef. Prob. Coef. Prob. 
Mean Equation 

𝜇 0.0001 0.451 0.0001 0.265 
     
 Variance Equation 

𝛼) 0.0000 0.658 -0.365 0.000 
𝛼* 0.0862 0.000 0.035 0.007 
𝛽* 0.9138  0.964 0.000 
𝛾   0.046 0.000 

𝛼* + 𝛽* 1 0.999 
𝐿 − 𝐽𝑢𝑛𝑔 
𝐵𝑜𝑥 0.2797 0.5969 0.1132 0.7365 

 

Table 7 shows estimation of some GARCH models i.e., GARCH(1,1), ARMA(1,1)-
GARCH(1,1), ARMA(2,2)-GARCH(1,1), I-GARCH, and E-GARCH. Results show that the ARCH 
term (𝛼"), and GARCH term (𝛽") are statistically significant in all of the models. This means that 
conditional variance correlates with lagged conditional variance and lagged square disturbance, or 
exchange rate news about volatility today has explanatory power on the next period’s volatility. The 
sum of ARCH and GARCH terms in all models is close to 1. It indicates volatility shocks are quite 
persistent. L-Jung box test results show that all of the models have a white noise residual. Based on 
these parameter estimates, the models can be written as 

GARCH (1,1)   
Mean Equation 𝑟! = 0.000076 + 𝜀! 
Variance Equation 𝜎!$ = 0.000002 + 0.097817𝜀!#"$ + 0.845202𝜎!#"$  
ARMA(1,1)-GARCH(1,1)   
Mean Equation 𝑟! = 00008 + 0.89179𝑟!#" − 0.9029𝜀!#" + 𝜀! 
Variance Equation 𝜎!$ = 0.000002 + 0.096922𝜀!#"$ + 0.844473𝜎!#"$  

 
 

ARMA(2,2)-GARCH(1,1)   
Mean Equation 𝑟! = 0.00007 − 0.9998𝑟!#" − 0.9863𝑟!#$ + 1.00404𝜀!#"

+ 0.9998𝜀!#$ + 𝜀! 
Variance Equation 𝜎!$ = 0.000002 + 0.097176𝜀!#"$ + 0.842340𝜎!#"$  
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I-GARCH   
Mean Equation 𝑟! = 0.0001 + 𝜀! 
Variance Equation 𝜎!$ = 0.0862𝜀!#"$ + 0.9138𝜎!#"$  
E-GARCH   
Mean Equation 𝑟! = 0.0001 + 𝜀! 
Variance Equation 

log 𝜎!$ = −0.365 + 0.035 kl
𝜀!#"
𝜎!#"

l − m
2
𝜋
o + 0.964 log 𝜎!#"$

+ 0.046
𝜀!#"
𝜎!#"

 

3.4. Model Evaluation 
In this part, we will evaluate the performance of models built in the previous part. We divide the 

evaluation into two parts, i.e., for in-sample data and out-sample data. Model evaluation for in-
sample data based on RMSE, MAE, and MAPE criteria is reported in Table 8 and the performance 
models are visualized in Fig. 5. 

 
Fig. 5. Model performance for in-sample data. 

According to Table 8, we can see that the criteria values of RMSE, MAE, and MAPE are very 
close among models and it’s hard to decide which one is the best. It also shown in Fig. 5, all of the 
models are able to capture the fluctuation of in-sample data. However, in this case, we decide that 
the best model for in-sample data is ARIMA(2,1,2) with the smallest RMSE and MAPE. Since the 
final objective of the time series model is to forecast the future value, we also evaluate the 
performance of models to out-sample data. Model evaluation for out-sample data is reported in Table 
9 and visualized in Fig. 6. 

Table 8. Model Evaluation for In-Sample Data 
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Model RMSE MAE MAPE 
ARIMA(0,1,2) 0.00457 0.00325 0.00419 
ARIMA(2,1,2)* 0.00455 0.00324 0.00417 
GARCH(1,1) 0.00459 0.00324 0.00418 
ARMA(1,1)-GARCH(1,1) 0.00458 0.00324 0.00418 
ARMA(2,2)-GARCH(1,1) 0.00457 0.00324 0.00418 
IGARCH(1,1) 0.00459 0.00324 0.00418 
EGARCH(1,1) 0.00459 0.00324 0.00418 
*) The smallest value (best model) 

Table 9. Model Evaluation for Out-Sample Data 

Model RMSE MAE MAPE 
ARIMA(0,1,2) 0.0301 0.0239 0.0282 
ARIMA(2,1,2) 0.0289 0.0236 0.0279 
GARCH(1,1) 0.0236 0.0204 0.0239 
ARMA(1,1)-GARCH(1,1) 0.0237 0.0205 0.0240 
ARMA(2,2)-GARCH(1,1) 0.0237 0.0205 0.0240 
IGARCH(1,1) 0.0245 0.0205 0.0242 
EGARCH(1,1)* 0.0236 0.0203 0.0238 

*) The smallest value (best model) 
 

 

Fig. 6. Model performance for training data. 

The out-sample data contains 34 days of the USD/GBP exchange rate i.e., along the period from 
2022-10-17 up to 2022-12-01. Table 9 shows the model evaluation for out-sample data. Unlike in-
sample data, the performance looks different among models for out-sample data. There are two 
models showing similar performance i.e., ARIMA(1,1)-GARCH(1,1) and ARIMA(2,2)-
GARCH(1,1). These two models have identical values of RMSE, MAE, and MAPE. This is also 
visualized in Fig. 6 where we can see that these two models have a coinciding line. ARIMA(0,1,2) 
and ARIMA(2,1,2) cannot follow the out-sample data fluctuation and have larger criteria values. 
IGARCH (1,1) has a larger criteria value than the other kind of GARCH model, and its line is unable 
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to follow the fluctuation of out-sample data. GARCH(1,1) and EGARCH(1,1) have very close lines 
and criteria values. Their line is quite able to follow the fluctuation of out-sample data. However, in 
this case, EGARCH(1,1) has the smallest value of RMSE, MAE, and MAPE. Hence, we recommend 
that this model is the best to forecast USD/GBP exchange rate data. 

4. Conclusion 
In this report, the aim was to model and forecast USD/GBP exchange rate data using the mean 

model belonging to ARIMA and the variance or volatility model with kinds of GARCH. The results 
of this report show that in the out-sample part, EGARCH(1,1) has the best performance in forecasting 
because it is more able to capture the pattern of out-sample data with minimum RMSE, MAE, and 
MAPE. While, the mean model, ARIMA(0,1,2) and ARIMA(2,1,2) show bad performance for the 
out-sample part. Since this report aims to forecast, in this case, we recommend EGARCH(1,1) as the 
best model to forecast the USD/GBP exchange rate. 
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