
 

 

https://journal.uii.ac.id/ENTHUSIASTIC  p-ISSN 2798-253X  
  e-ISSN 2798-3153 
 

 

ENTHUSIASTIC 
INTERNATIONAL JOURNAL OF APPLIED STATISTICS AND DATA SCIENCE 

V olum e  4 ,  I s sue  1 ,  A pr i l  2024 ,  pp .  51 -57  

Hybrid MODWT-ARMA Model for Indonesia Stock Exchange 
LQ45 Index Forecasting  

Hermansah a,1,*  
a Department of Mathematics Education, Universitas Riau Kepulauan, Batam, Indonesia  
1 hermansah@fkip.unrika.ac.id * 
* Corresponding author 

ARTICLE INFO 
 

ABSTRACT  
 

Keywords 
time series  
LQ45 
forecasting  
DWT 
MODWT-ARMA 

 This research discussed a hybrid Maximal Overlap Discrete Wavelet 
Transform (MODWT)-Autoregressive Moving Average (ARMA) 
model by combining the MODWT and the ARMA models to deal with 
the nonstationary and long-range dependence (LRD) time series. 
Theoretically, the details series obtained by MODWT are stationary 
and short-range dependent (SRD). Then, the general form of the 
MODWT-ARMA model was derived. In the experimental study, the 
daily Indonesia stock exchange LQ45 index time series was used to 
assess the performance of the hybrid model. Finally, the Mean Squared 
Error (MSE) and Mean Absolute Percent Error (MAPE) comparison 
with DWT-ARMA, ARIMA, and exponential smoothing models 
indicates that this combined model effectively improves forecasting 
accuracy. Based on the result of the analysis, the score of MSE of the 
MODWT-ARMA model was 51.42533, the score of the DWT-ARMA 
model was 180.1799, the score of the ARIMA model was 168.7863, 
and the score of the exponential smoothing model was 168.7824. At 
the same time, the score of MAPE in the MODWT-ARMA model was 
0.00580797, the score of the DWT-ARMA model was 0.01106721, the 
score of the ARIMA model was 0.01070074, and the score of the 
exponential smoothing model was 0.01069591.  

 

 

1. Introduction  
In statistics and signal processing, a time series is a series of data in the form of observations 

measured over a period of time. Time series analysis is a method that studies time series, both in 
terms of theory and forecasting [1], [2]. The method frequently used in time series analysis is the 
Autoregressive Moving Average (ARMA). This method represents a stationary time series. 
Stationary means there is no growth or decline in the data. In other words, fluctuations in data are 
around a constant average value, not dependent on time and variance. However, many time series 
data are nonstationary, such as daily stock data, inflation, interest rates, rainfall, commodity 
exchange, and prices. Nonstationary time series must be changed to stationary data through 
differentiation. Differentiation is calculating changes or differences in observation values. The value 
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of the difference obtained is checked for stationarity. In reality, a lot of data has very high volatility 
and is difficult to stationer. In this case, the ARMA method is deemed unsuitable [3], [4]. 

Another method often used in time series analysis is Fourier transformation, a nonparametric 
method based on the frequency domain. Often, information that cannot be seen in the time domain 
can be seen in the frequency domain, for example, Electrocardiography (ECG) in the medical field. 
However, Fourier transforms have drawbacks, namely, being unable to simultaneously represent 
time and frequency information. It causes Fourier transformation to be unsuitable for analyzing 
nonstationary data. Another approach was developed to overcome the weaknesses in signal 
processing, namely by wavelet transformation [5], [6]. 

Wavelet transforms can represent time and frequency information simultaneously; therefore, 
they can be used to analyze nonstationary data. Wavelet is a relatively newly developed concept. The 
word “wavelet,” given by Jean Morlet and Alex Grossmann at the beginning of the 1980s, comes 
from the French “ondelette,” meaning small waves. The word “onde” was then translated into 
English into a “wave,” then it was combined with the original word so that a new word, “wavelet,” 
was formed. A wavelet function is defined as a mathematical function with certain properties, 
including oscillating around zero (such as sine and cosine functions) and localized in the time 
domain, meaning that when the domain value is relatively large, the wavelet function is zero [7]. 

Wavelet transform is divided into two parts, namely Continuous Wavelet Transform (CWT) and 
Discrete Wavelet Transform (DWT). In DWT, it is assumed that the sample size N can be divided 
into 2J for a positive integer J. A new concept has been developed to overcome the limitations of 
DWT in the sample size; this concept is known as the Maximal Overlap Discrete Wavelet Transform 
(MODWT). MODWT has advantages over DWT. It can be used for each sample size and reduces 
data to half (downsampling) so that in each decomposition level, there are wavelet and scale 
coefficients as much as data length [8]–[10]. 

The application of the wavelet method, specifically the hybrid MODWT-ARMA model, to 
analyze time series data was discussed in this research. In this case, MODWT was used to decompose 
time series data into a different scale level at each level. The decomposition produced MODWT 
coefficients, namely the coefficient of wavelets and scales. The determination of the coefficient of 
wavelets and scale was calculated using an algorithm called the pyramid algorithm. Prior to this 
calculation, the wavelet filter and scale filter to be used must be determined first. The wavelet 
coefficients (detail) and scale coefficients (smooth) cannot be directly utilized to estimate the time 
series model. The model estimation can be done using the ARMA process. The final results of time 
series data forecasting were obtained from a combination of detail and smooth forecast values [11]. 

Furthermore, the hybrid MODWT-ARMA model was applied to this research based on real data, 
namely the daily Indonesia stock exchange LQ45 index time series. The LQ45 index data is assumed 
to be suitable due to the assumption that the data is not stationary. Hence, it is in accordance with the 
research purpose, namely modeling nonstationary time series data. Then, the forecasting accuracy 
was measured using the Mean Squared Error (MSE) and Mean Absolute Percent Error (MAPE) 
values. In addition, the performance of the hybrid MODWT-ARMA model was compared to several 
methods, namely the hybrid DWT-ARMA model described in Paul and Anjoy (2018) [12], the 
ARIMA model described in Hyndman and Khandakar (2008) [13], and the exponential smoothing 
model described in Hyndman et al. (2002) [14]. 

2. Method 

2.1. Maximal Overlap Discrete Wavelet Transform (MODWT) 
The MODWT is a modified version of the discrete wavelet transform (DWT) [15]. Both DWT 

and MODWT allow for a multi-resolution analysis, which is a scale-based additive decomposition. 
The MODWT definition is obtained directly from the DWT: let be, !ℎ!,## is the DWT wavelet filter 
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and !𝑔!,## is the scaling filter, with 𝑙 = 1,… , 𝐿 is the length of the filter and jth level of decomposition. 
The MODWT wavelet !ℎ+!,## and scaling !𝑔,!,## filters are directly defined as follows. 

ℎ"!,# = ℎ!,#/2!/% and 𝑔'!,# = 𝑔!,#/2!/%. 

Then, the MODWT wavelet coefficients of level j is defined as the convolution of the time series 
𝑋 = {𝑋$ , 𝑡 = 0,… ,𝑁 − 1} and the MODWT filters: 

𝑊)!,& = ∑ ℎ"!,#
'!()
#*+ 	𝑋&(#,-./   (1) 

𝑉"!,& = ∑ 𝑔'!,#
'!()
#*+ 	𝑋&(#,-./  (2) 

where 𝐿! = 42! − 16(𝐿 − 1) + 1. Note that from the above expressions, the MODWT wavelet 
coefficients at each scale will have the same length as the original signal X. Now, they can be 
expressed in matrix notation as follows. 

𝑊)! = 𝜔/! 	𝑋 and 𝑉"! = 𝑣'! 	𝑋 

where each row of the 𝑁 × 𝑁 matrix 𝜔<! has values dictated by !ℎ+!,##. While 𝑣,! has values dictated 
by !𝑔,!,##. Then, the original time series X can be recovered from its MODWT via,  

𝑋 = ∑ 𝜔/!0
1
!*) 	𝑊)! + 𝑣'10	𝑉"1 = ∑ 𝐷)!

1
!*) + 𝑆41.  (3) 

It defines a MODWT-based multiresolution analysis (MRA) of X in terms if jth level MODWT 
details 𝐷?! = 𝜔<!% 	𝑊?! and the j level MODWT smooth 𝑆C& = 𝑣,&% 	𝑉+& [16]. 

2.2. MODWT-ARMA Model 
By using the MODWT, a discrete time series {𝑋$ , 𝑡 = 1, 2, … ,𝑁} can be written with the 

following form: 

𝑋& = 𝑆41",& +∑ 𝐷)!,& , 𝑡 = 1, 2, … ,𝑁1"
!*+ .  (4) 

The first part 𝑆C&! = !𝑆C&!,$ , 𝑡 = 1, 2, … ,𝑁# presents the tendency of series and is characterized by slow 
dynamics. Meanwhile, the second part components 𝐷?! = !𝐷?!,$ , 𝑡 = 1, 2, … ,𝑁#, 𝑗 = 1, 2, … , 𝐽', 
present the local details of the series 𝑋$ and is characterized by fast dynamics especially for low 
levels [17].  

To compute the predicted value 𝑋G()* of 𝑋$, it suffices then to do this for 𝑆C&! and the 𝐷?!, i.e, to 
evaluate 𝑆CH&!,()* and 𝐷?I!,()* , 𝑗 = 1, 2, … , 𝐽'. To do this, let us write:   

𝑆4:1",/23 = 𝑓+<𝑆41",/, 𝑆41",/(), … , 𝑆41",/(4"=  

and similarly 

𝐷)>!,/23 = 𝑓! ?𝐷)!,/, 𝐷)!,/(), … , 𝐷)!,/(4!@, 𝑗 = 1, 2, … , 𝐽+  

where 𝑓!(𝑗 = 0, 1, … , 𝐽') is the estimator, each estimator 𝑓! may have its proper order 𝑝!. The choice 
of 𝑓', 𝑓+, … , 𝑓&! is related to the dynamic behavior of the series to be predicted. Here, we concerned 
with the linear ARMA model. 

The process {𝑋$ , 𝑡 ∈ ℤ} is said to be an ARMA (p, q) process if {𝑋$} is stationary and if for every 
t, 
𝑋& = 𝜑)𝑋&() + 𝜑%𝑋&(% +⋯+𝜑4𝑋&(4 + 𝑒& + 𝜃)𝑒&() + 𝜃%𝑒&(% +⋯+ 𝜃5𝑒&(5 (5) 

where {𝑒$} is a white noise with mean 0 and variance 𝜎,. We say that {𝑋$} is an ARMA (p, q) process 
with mean 𝜇 if {𝑋$ − 𝜇} is an ARMA (p, q) process. Equation (5) can be written symbolically in the 
more compact form as in (6). 
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𝜑(𝐵)	𝑋& = 𝜃(𝐵)	𝑒& , 𝑡 ∈ ℤ   (6) 

where 𝜑 and 𝜃 are the pth and qth degree polynomials. 
𝜑(𝐵) = 1 − 𝜑)𝐵 − 𝜑%𝐵% −⋯−𝜑4𝐵4  (7) 

and 
𝜃(𝐵) = 1 + 𝜃)𝐵 + 𝜃%𝐵% +⋯+ 𝜃5𝐵5  (8) 

and B is the backward shift operator defined by: 
𝐵!𝑋& = 𝑋&(! , 𝑗 ∈ ℤ.  (9) 

The polynomials 𝜑 and 𝜃 will be referred to as the autoregressive and moving average 
polynomials of the difference (6), respectively. 

Based on above theory, the tendency and details can be approximated as following forms.  

𝑆4:1",/ = 𝜑)𝑆41",/() +⋯+𝜑4"𝑆41",/(4" + 𝑒/ + 𝜃)𝑒/() +⋯+ 𝜃5"𝑒/(5"  (10) 

and 

𝐷)>!,/ = 𝜑!)𝐷)!,/() +⋯+𝜑!4!𝐷)!,/(4! + 𝑒/ + 𝜃!)𝑒/() +⋯+ 𝜃!5!𝑒/(5!. (11) 

By using the notation above, (8) and (9) can be written as follows.  

𝑆4:1",/ = [𝜑(𝐵) − 1]𝑆41",/ + 𝜃(𝐵)𝑒/  (12) 

and 

𝐷)>!,/ = O𝜑!(𝐵) − 1P𝐷)!,/ + 𝜃!(𝐵)𝑒/.  (13) 

Hence, the MODWT-ARMA prediction model is as follows. 

𝑋Q/23 = 𝑆4:1",/23 + ∑ 𝐷)>!,/23
1"
!*+   

𝑋Q/23 = [𝜑(𝐵) − 1]𝑆41",/23 + 𝜃(𝐵)𝑒/23 +∑ <O𝜑!(𝐵) − 1P𝐷)!,/23 + 𝜃!(𝐵)𝑒/23=
1"
!*+ . (14) 

The flowchart for the hybrid MODWT-ARMA modeling algorithm is presented in Fig. 1. 

 
Fig. 1 Flowchart of hybridization of MODWT and ARMA. 
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3. Results and Discussion 
The research data used for modeling was the LQ45 index data obtained from finance.yahoo.com. 

The data was the daily closing stock price collected from January 2, 2015, to January 9, 2019, which 
amounted to 974 data. The LQ45 index data was divided into training and testing data. The training 
data, consisting of 779 data, was used to construct a model, while the testing data, consisting of 195 
data, was utilized to evaluate the model. 

LQ45 is a stock market index for the Indonesia Stock Exchange (IDX) (formerly known as the 
Jakarta Stock Exchange). It consists of 45 companies. The LQ45 index data was used as research 
data because the assumption was that the data was not stationary; hence, it aligned with the research’s 
purpose of modeling nonstationary time series data. 

The initial modeling procedure used the MODWT-ARMA to check data stationarity. Using the 
R program, the ADF test statistic obtained was that the p-value = 0.6506, which was greater than the 
one used, which is 0.05. It can be concluded that the data is not stationary. Decomposition with 
MODWT was done to station the series details so that the results were stationary. In this case, the 
wavelet family was Daubechies 6 with six levels. The detail and smooth values obtained were 𝐷?+, 
𝐷?,, 𝐷?-, 𝐷?., 𝐷?/, 𝐷?0 and 𝑆C0. The original data and the decomposed data using MODWT had the same 
value, namely: 

𝑋& = 𝐷)) +𝐷)% +𝐷)6 +𝐷)7 +𝐷)8 +𝐷)9 + 𝑆49  

Subsequently, the stationarity of the data from each of the decomposition results was examined 
using a hypothesis; namely, there is a root unit (data is not stationary). The ADF test statistic obtained 
was that all decomposition results have a p-value smaller than 𝛼, which was 0.05. Thus, it is 
concluded 𝐻' is rejected and the decomposition data is stationary. Furthermore, Detail 1 (𝐷?+) 
forecasting with ARMA can be done using syntax auto.arima. The best model was then obtained, 
namely ARMA (0,5). Next step was forecasting with ARMA (0,5). Analog for Detail 2 (𝐷?,) 
forecasting used the best model ARMA (3,0), Detail 3 (𝐷?-) used the best model ARMA (3,2), Detail 
4 (𝐷?.) used the best model ARMA (1,0), Detail 5 (𝐷?/) used the best model ARMA (0,4), Detail 6 
(𝐷?0) used the best model ARMA (1,0), and Smooth 6 (𝑆C0) used the best ARMA model (2,0). 

With the “fitted” syntax using the R program, the sum of the simulation values for each 
decomposition is obtained, visually seen in the plot of the training data with the simulation data in 
Fig. 2. In Fig. 2, the blue line indicates the in-sample prediction (simulated data), while the black line 
shows the original data (real data). The graph shows that the in-sample prediction value (simulated 
data) moves to resemble the pattern of the original data (real data) with an MSE value of 10.62197 
and a MAPE of 0.002432078. Meanwhile, the red line in Fig. 2 results from the out-sample prediction 
(predicted data). The pattern shown from the out-sample prediction data graph (predicted data) 
almost resembles the original data pattern (real data). The out-sample prediction graph (predicted 
data) had an MSE value of 51.42533 and a MAPE of 0.00580797. 

 
Fig. 2 LQ45 index time series and its simulations and predictions using MODWT-ARMA model. 
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Furthermore, (15) was used to obtain the LQ45 index stock price data forecast. 

𝑋Q/2) = 𝑆4:9,/2) +∑ 𝐷)>!,/2)9
!*+    (15) 

The results of the visual forecast and the visual testing are shown in Fig. 2. In order to show the 
proposed method’s accuracy, the comparison of MSE and MAPE obtained by MODWT-ARMA 
model, DWT-ARMA model, ARIMA model and exponential smoothing model are presented in 
Table 1.   

Table 1. Prediction Accuracy Comparison of MODWT-ARMA Model, DWT-ARMA Model, ARIMA 
Model and Exponential Smoothing Model of the Indonesia Stock Exchange LQ45 

Prediction Method MODWT-ARMA DWT-ARMA ARIMA Exponential 
Smoothing 

MSE simulated 10.62197 117.9819 91.49351 91.49268 
MAPE simulated 0.002432078 0.009000032 0.007911403 0.007910197 
MSE predicted 51.42533 180.1799 168.7863 168.7824 
MAPE predicted 0.00580797 0.01106721 0.01070074 0.01069591 

4. Conclusion 
MODWT is a wavelet transformation modified from DWT. The sample observed for DWT can 

only be expressed in the form of 2J with J positive integers, while MODWT can be used for each 
sample size. Another advantage of MODWT is that it is able to reduce data to half so that for each 
level of decomposition there are wavelet coefficients (detail) and scale coefficients (smooth) as much 
as data lengths. Maximal MODWT-ARMA is related to nonstationary time series data. Stationary 
detail values are obtained by decomposing nonstationary data. It causes the results of decomposition 
can be predicted directly with ARMA. Based on the case study of the LQ45 index data, the MSE and 
MAPE were smaller than the DWT-ARMA model, the ARIMA model, and the exponential 
smoothing model. Based on the result of the analysis, the score of MSE of MODWT-ARMA model 
was 51.42533, the score of DWT-ARMA model was 180.1799, the score of ARIMA model was 
168.7863, and the score of exponential smoothing model was 168.7824. At the same time, the score 
of MAPE in the MODWT-ARMA model was 0.00580797, the score of DWT-ARMA model was 
0.01106721, the score of ARIMA model was 0.01070074, and the score of exponential smoothing 
model was 0.01069591. The MODWT-ARMA model yielded the lower MSE and MAPE values. It 
indicates that the hybrid MODWT-ARMA model is effective to increase the accuracy of forecasting.  
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