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 Potato plants have a very high nutritional value, making them widely 
cultivated in Indonesia. To ensure the cultivation of potatoes has good 
quality, many individuals, ranging from farmers to researchers and plant 
breeders, strive to explore and understand the characteristics of plant 
resistance sources, one of which is through the role of trichomes. 
Trichomes are fine hairs that coat the outer surface of plant leaves, 
serving as a physical barrier and regulating plant temperature. 
Identification and quantification of trichomes are commonly conducted 
manually by researchers, which consumes much time and is inefficient. 
Therefore, a system that can automatically detect and quantify trichomes 
is crucial to avoid manual identification and quantification, allowing 
these processes to be carried out more quickly. This study utilized a deep 
learning approach to train a model capable of detecting and quantifying 
trichome objects. The model architecture used was YOLOv8. From the 
training process, the resulting mean average precision (mAP) at a 
confidence threshold of 50 was 0.816, while the mAP at a confidence 
threshold of 90 was 0.38. This model is expected to assist experts or 
researchers in the field of agriculture in identifying trichomes, thereby 
optimizing crop yields. 

 

  

1. Introduction  
Indonesia heavily relies on the agricultural sector, which plays a crucial role in the welfare of its 

people. As a result, horticultural crops are widely cultivated, including potato plants. Potatoes are a 
significant source of carbohydrates and have excellent nutritional value, making them one of the 
most cultivated crops not only in Indonesia but also in European countries. According to data from 
the Central Statistics Agency in 2022, potatoes ranked fourth as the most produced and cultivated 
crops in Indonesia, with a total of 1.36 million tons in 2022. 
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To ensure that potato cultivation and production are of high quality, farmers, researchers, and 
plant breeders are striving to explore and understand the characteristics of new resistance sources, 
one of which is the role of trichomes as a defense mechanism in plants. Trichomes are fine hair-like 
structures that cover the outer parts of plant leaves and function as physical and chemical barriers 
[1], [2]. Trichomes play a crucial role as a plant defense mechanism against extreme weather 
conditions or insect pests, prompting researchers and plant breeders to identify trichome glands to 
produce high-quality plants.  

Identification and quantification of trichomes are usually done manually by researchers. Manual 
techniques for trichome detection and quantification, while feasible for small datasets, are highly 
time-consuming and prone to human error. Given the complex morphology of trichomes and their 
often-subtle visual differences from other plant structures, manual observation can lead to 
inconsistencies in counting and categorization. Furthermore, as the scale of analysis increases, such 
as in high-throughput screening or large agricultural studies, the inefficiency of manual methods 
becomes more apparent [3], [4]. Deep learning addresses these challenges by automating the 
detection process, significantly reducing the time required and minimizing the potential for human 
error. Deep learning ability to process images quickly while maintaining high accuracy ensures that 
trichomes are consistently detected and quantified, providing reliable data even in large-scale studies. 

Several studies have successfully applied deep learning in agricultural contexts. For example, 
the study titled Deep Learning Image Segmentation and Extraction of Blueberry Fruit Traits 
Associated with Harvestability and Yield' utilized deep learning for the digital phenotyping of 
blueberry fruits [5]. This study focused on developing a data processing pipeline capable of counting 
the number of berries, measuring ripeness levels, and evaluating crop yields automatically through 
image segmentation methods and deep learning algorithms to classify four blueberry cultivars. This 
research highlights the significant potential of deep learning in automating tasks that previously 
relied on manual observation, further supporting the validity of using similar technology for trichome 
detection in plant leaves [5], [6]. 

Understanding this problem, it is essential to develop a system or model based on deep learning 
that can automatically identify and quantify trichomes. This model is expected to assist experts or 
researchers in the agricultural field in identifying trichomes, thereby optimizing crop yields [7]. The 
method used to build the model is one of the deep learning algorithms, namely convolutional neural 
networks (CNN), with the YOLOv8 model architecture. You Only Look Once (YOLO) is one of the 
variant architectures in the CNN algorithm [8][9]. YOLO can perform real-time object detection by 
including localization, where the localization generated by YOLO is a collection of pixels with the 
highest-class probability. The localization process is carried out by applying the YOLO model to the 
image at each location (pixel) and then assigning a probability value to the image as a result of 
detection. The YOLO architecture uses a slightly different approach compared to other CNN variant 
architectures, where YOLO uses a single neural network across the entire image and partitions the 
image into regions, predicting bounding boxes and their probability values [10], [11]. 

Based on the background and problems mentioned, the author will attempt to develop a deep 
learning model that can be used to identify and quantify trichomes on the surface of plant leaves 
using one of the CNN variant architectures, YOLOv8, utilizing deep learning and computer vision 
technology. The research conducted in this study is expected to assist researchers, plant breeders, 
and plant scientists in automatically identifying trichomes. 

2. Method  
This research aims to train a model to detect and quantify trichome images on potato plant leaves 

using the CNN method, specifically employing the YOLOv8 architecture. The data used in this study 
consisted of microscopic images of the surface of cultivated potato leaves obtained from Wageningen 
University & Research. 

The collected data underwent a preprocessing stage aimed at dividing the images into several 
sections (subimages) with dimensions of 4 × 4. Trichome detection was performed through the 
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subimages to facilitate the system in identifying trichomes by enlarging the image size according to 
each subimage. An illustration of the image preprocessing can be seen in Fig. 1. 

 
Fig. 1 Image preprocessing workflow for potato leaf trichome detection. 

The next preprocessing step was applying data augmentation techniques such as image rotation, 
flipping, and scaling to artificially increase the diversity of the training dataset and prevent 
overfitting. This ensures the model generalizes well to unseen data. Additionally, the images were 
normalized to standardize pixel intensity values, making them more suitable for deep learning 
models. Normalization ensures that each pixel value is within a similar range, typically between 0 
and 1, which helps improve model convergence during training. 

The next step was the labeling process, assigning class information to the objects to be detected. 
This study focused on the class of glandular bulbous trichomes. These trichomes have short stalks 
that swell at the top, giving them a rounded or bulbous appearance. The next step involved 
configuring the system and tuning parameters for the neural network process. This process is crucial 
as it will affect the final results and the accuracy of the model in performing detection. The loss 
functions used in the YOLOv8 architecture include box loss, classification loss, and distribution focal 
loss. The metrics used were mean Average Precision (mAP) and Intersection Over Union (IoU). 
mAP was chosen because it provides a comprehensive measure of the model’s performance by 
evaluating both precision and recall across different detection thresholds. Unlike simpler metrics like 
accuracy, which might not account for false positives and false negatives in object detection tasks, 
mAP gives a more nuanced insight into the balance between these two factors, allowing us to better 
understand how well the model is detecting trichomes. mAP was used to ensure that the model’s 
ability to correctly detect glandular bulbous trichomes was thoroughly evaluated. Its metric has a 
value range between 0 and 1. This range is used to measure the quality of the object detection 
system’s performance in object recognition tasks. The mAP value is obtained by calculating the 
Average Precision (AP) for each detected object class, and then averaging all those APs. AP itself 
measures the system’s accuracy and precision in detecting objects by considering recall (the number 
of objects successfully detected) and precision (the number of correct detections). A higher mAP 
value indicates better performance, with 1 as the maximum value reflecting perfect detection. 
Meanwhile, a lower mAP value indicates less accurate performance or poor detection. The choice of 
threshold for determining whether an object detection is correct or incorrect can affect the mAP 
value. Common IoU threshold values are around 0.5 to 0.7, but they can be adjusted based on the 
needs of the research. With a value range of 0 to 1, mAP provides a comprehensive measure of object 
detection performance across different classes and facilitates comparison between different systems. 
In this study, a threshold value of 0.5 (50%) and 0.5-0.9 (50%-90%) was used as a reference for the 
success of the trained model. 

After the learning model process was completed, evaluation or testing was carried out using 
validation data. This was also done to assess the implementation and final results of the trained 
model. To generalize the results obtained regarding trichome detection and quantification, several 
steps were done, such as comparing the number of trichomes predicted by the model with the actual 
number of trichomes in the ground truth data. Then, the precision and recall values based on the 
obtained true positive, false positive, and false negative values were calculated. 
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The output of this study included the detection and quantification of glandular bulbous trichomes 
on microscopic images of cultivated potato leaf samples. Quantification was conducted based on the 
partitioned areas or subimages. This model serves as one of the initial steps or pioneers in trichome 
detection and quantification using deep learning. Future research can develop models capable of 
detecting and quantifying other types of trichomes and apply them to leaf samples from other plant 
species. The overall research flow is illustrated in the flowchart shown in Figure 2. 

 
Fig. 2 Flowchart of the deep learning model training and detection process. 

2.1. Convolutional Neural Network (CNN) 
 CNN is a type of neural network commonly used in image processing [12]. It performs feature 

learning during data preprocessing, which transforms image data into numerical features from pixel 
values for computer processing. This process involves several layers, including the convolution layer, 
pooling layer, and fully connected layer [13], [14]. After feature learning, pixel values are converted 
into vectors for input into the neural network algorithm. Thus, CNN consists of two main parts: 
feature extraction (preprocessing) and neural network (classification) [15]. 

Each layer in CNN has the following functions: 

• Convolutional Layer: Performs convolution between filters (kernels) and the input image to 
extract basic features such as edges, textures, or specific patterns from the image. 

• ReLU (Rectified Linear Unit) Layer: Applies an activation function that introduces non-
linearity into the model by converting negative values to zero, helping the model capture 
non-linear relationships. 

• Pooling Layer: Reduces the spatial dimensions of the feature maps (typically using max 
pooling or average pooling), decreasing the number of parameters and computations in the 
network, and making feature detection more robust to slight translations. 

• Fully Connected Layer: Connects all neurons from one layer to neurons in the next layer, 
combining the extracted features to make the final decision, such as classifying objects 
within the image. 

• Softmax Layer: Produces output probabilities for each class, ensuring the total probability 
sums to 1, and determines which class is the most likely outcome. 

Each layer contributes to learning feature representations from the input image, with the features 
becoming more abstract at each successive layer [16]. 

2.2. You Only Look Once (YOLO)  
The YOLO algorithm uses CNN for object detection [17]. As its name suggests, the YOLO 

algorithm uses only one layer of the neural network on the image [18]. This network divides the 
image into several regions and predicts bounding boxes and probabilities for each region 
simultaneously [19]. To calculate the confidence value of a bounding box, the following equation 
can be used: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡 = 𝑃!(𝑜𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈"!#$%!&%'  (1)  
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where 𝑃!(𝑜𝑏𝑗𝑒𝑐𝑡) is the probability of an object being detected within the bounding box, and 
𝐼𝑂𝑈"!#$%!&%' is the ratio of the overlapping area between the predicted bounding box and the ground 
truth bounding box to the combined area of both bounding boxes. Equations (2) and (3) below show 
how YOLO calculates these probabilities [20]. 

𝑃!(𝐶𝑙𝑎𝑠𝑠(|𝑂𝑏𝑗𝑒𝑐𝑡) × 𝑃!(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈"!#$%!&%' = 𝑃!(𝐶𝑙𝑎𝑠𝑠() × 𝐼𝑂𝑈"!#$%!&%' (2)  

𝑇𝑒𝑛𝑠𝑜𝑟	𝑆𝑖𝑧𝑒 = 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶) (3)  

where 𝑃!(𝐶𝑙𝑎𝑠𝑠(|𝑂𝑏𝑗𝑒𝑐𝑡) is the conditional probability that the detected object belongs to class 𝑖, 
given the presence of an object in the bounding box, and 𝐶 is the number of object classes the model 
aims to detect [21]. 

3. Result and Discussion 

3.1. Data Preprocessing 
The total number of images used for this research was 79. These 79 images underwent a 

preprocessing stage, where the images were cropped to a dimension of 4 × 4, resulting in each image 
being divided into 16 new subimages. However, not all subimages generated were used during the 
labeling (annotation) process. Fig. 3 illustrates how the subimage filtering process is conducted to 
select which subimages will proceed to the annotation process. Subimages that did not represent the 
leaf surface or did not contain trichomes were removed and were not used in the labeling and training 
process. As a result, the total data produced from this process was 937 subimages. 

 
Fig. 3 Example of cropping and filtering subimages for training. 

3.2. Dataset Splitting and Labelling  
From the whole image that had been obtained, the data was divided into two parts: 80% for 

training the model, consisting of 750 images, and 20% for testing, consisting of 187 images. The 
training data was used to train the model, while the test data was used to measure the accuracy of the 
trained model. 

After the dataset was divided, the next step was labeling each data entry. This process aimed to 
provide class annotations and place bounding boxes around each object in the specified class. All 
labeled results were exported into YOLO format (txt files). Each .txt file contains information about 
the object class code, object coordinates (𝑥, 𝑦), width, and height. Fig. 4 shows an example of a data 
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sample resulting from annotation in YOLO format. As seen in the figure, it consists of 6 annotated 
objects, and each object contains information about the object class (0), object coordinates (𝑥, 𝑦), 
object width, and object height. 

 
Fig. 4 Sample of annotated data in YOLO format with bounding boxes. 

3.3. Training model 
The initial step taken before starting the model training process was to set the hyperparameters. 

Hyperparameters in the context of machine learning and deep learning are parameters whose values 
are determined before the training process begins. Hyperparameters control certain aspects of the 
training process and model architecture that cannot be learned from the data during training. In this 
study, several important parameters such as epoch, learning rate, batch size, image size, and others 
were adjusted. These parameters are presented in more detail in Table 1. 

Table 1. Hyperparameter Tuning for YOLOv8 in Trichome Detection Model Training 

Parameter Description Value 

epoch 
A complete cycle where the entire dataset is 
processed by the learning algorithm to update the 
model weights. 

100 

Learning rate 

Determining the magnitude of changes or adjustments 
made to the model weights during the training process 
each time the backpropagation algorithm updates the 
weights. 

0.01 

Batch size The number of data samples processed together 
before the model updates its weights during training. 16 

Patience 
The number of epochs to wait when there is no 
improvement in validation metrics to prevent 
overfitting. 

100 

Imgsz The target size for image data during the training 
process. 640 

Single_cls 

Combining all classes/labels in the dataset into a 
single class during training. This is useful for binary 
classification tasks or when focusing on object 
detection rather than classification. 

True 

Weight_decay The parameter that controls the level of penalty on 
large weights to reduce overfitting. 0.0005 

box The size and scale of bounding boxes used for object 
prediction. 7.5 

nms Removing overlapping predictions with low 
confidence scores. False 

The following is a visual of the train_batch from several sample data during the training process, 
which has been conducted for 100 epochs. This visualization can help researchers check how the 
model learns and detects objects in the training images. It includes images with bounding boxes and 
the classes predicted by the model, allowing researchers to see whether the model detects objects 
correctly and in the right locations.  
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From the visualizations in Fig. 5, it can be observed that the detection of bounding boxes appears 
accurate and becomes increasingly precise as the training epochs progress. This indicates that the 
model is learning effectively. 

 
Fig. 5 Visualization of bounding boxes during the training process. 

3.4. Evaluation Metrics 
Once the training process is complete, the model will display several metrics or visualization 

plots that can be used to evaluate whether the training process has produced a good model or not. 
Some of the evaluation metrics generated include correlogram, box loss, classification loss, DFL 
loss, precision, recall, and mAP. 

A correlogram is a visualization that shows the correlation relationships between several 
variables. In the context of machine learning and data analysis, correlograms are used to depict the 
degree and direction of correlation between pairs of variables, which can help identify patterns and 
relationships within the data. The correlogram displayed consists of four elements: 	𝑥, 𝑦, width, and 
height. These elements relate to the size and location of the bounding box. 

The visualization in Fig. 6 shows a fairly strong positive correlation between the height and width 
of the bounding box. This means that as the width of the bounding box increases, its height also 
increases. This is because the glandular bulbose trichome objects have a consistent shape or 
proportion as their size changes. The coordinates of the bounding box center (𝑥, 𝑦) do not exhibit a 
strong correlation, meaning that the horizontal (𝑥) and vertical (𝑦) positions of the bounding box tend 
not to move together or are randomly distributed. This could be because the glandular bulbose 
trichome objects in the image do not move diagonally or follow any specific pattern. 
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Fig. 6. Correlogram of bounding box features. 

The visualization in Fig. 7 shows that each loss metric decreases significantly during the first 10-
30 epochs and does not show a significant decrease after the 30th epoch, although there is still a 
gradual and consistent decline. For the precision, recall, and mAP metrics, they also experienced a 
significant increase during the first 30 epochs and continued to improve, despite some minor 
fluctuations, until the end of the training process. This indicates that the training process generally 
went well and produced a model with fairly good performance. 

 
Fig. 7. Plot of loss functions, precision, recall, and mAP during training. 

From the precision-confidence plot in Fig. 8, it can be concluded that the model achieved 
maximum precision (1.00) at a confidence threshold of 0.813, meaning that all positive predictions 
at this threshold are correct, with no errors. Additionally, the precision-recall plot shows that the 
mAP value at a confidence threshold of 0.5 was 0.812, indicating good model performance. 
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Fig. 8 Precision-confidence and precision-recall curves for the trichome detection model. 

3.5. Model Implementation 
Model testing was conducted to observe the implementation of the YOLOv8 model in detecting 

trichomes. Fig. 9 shows a visual representation of the model’s implementation on one of the 
subimages in the validation data. In Fig. 9, the trained model performs well in detecting glandularis 
bulbous trichomes, with precise bounding box placement. During the detection process, a function 
was added to quantify the number of detected objects and display the results in the upper-left corner 
of the image. The quantification result shows that the model detected 24 trichomes in the subimage. 

 
Fig. 9 Example of successful detection and quantification of trichomes by YOLOv8. 

Fig. 10 present several examples where the YOLOv8 model failed to accurately detect trichomes. 
These cases provide insights into the model’s limitations under certain conditions, which are 
important to evaluate in practical applications. Fig. 10(a) shows a situation where some trichomes 
were not detected by the model. This is likely due to the trichomes’ shape and color appearing faint 
and resembling the surface of the leaf, making them difficult for the model to recognize. Smaller 
trichomes or those located in areas with low contrast are often not detected by the model. 
Additionally, Fig. 10(b) illustrates a situation where an object that is not a trichome was incorrectly 
detected as a trichome by the model. For example, dust particles or fine hairs on the surface of the 
leaf were interpreted as trichomes by the model due to their similar shape and visual texture. This 
error is likely caused by pattern similarities between trichomes and other small objects with similar 
contours or shapes, misleading the model in its classification. This case highlights the importance of 
a more diversified dataset to help the model better distinguish trichomes from visually similar but 
irrelevant objects. 
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Fig. 10 Cases where YOLOv8 Model failed to detect trichomes accurately. 

For the testing on 1 image of the entire leaf surface (all subimages), the results are shown in the 
Fig. 11. In Fig.11, it can be seen that the model is able to detect trichomes across all sub-images very 
well, although there are some trichome objects that the model failed to detect. Additionally, there are 
a few errors where objects outside the leaf surface, which should not be trichomes, were predicted as 
trichomes by the model. 

 
Fig. 11 Detection of glandular trichomes across multiple subimages of a leaf surface. 

The details of the detection counts for each subimage are presented in Table 2. There are 3 
variables that were calculated, namely “detected trichomes” (true positives), “undetected trichomes” 
(false negatives) and other objects incorrectly predicted as trichomes (false positives). 

Table 2. Evaluation of Trichome Detection for Each Sub-Image of a Potato Leaf 

Sub - Image Detected 
Trichomes 

Undetected 
Trichomes 

Other objects incorrectly 
predicted as trichomes 

Sub-Image 1 0 0 0 

Sub-Image 2 24 2 0 

Sub- Image 3 20 3 0 

Sub- Image 4 0 0 0 

Sub- Image 5 3 1 2 

Sub- Image 6 30 3 0 

Sub- Image 7 33 8 0 
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Sub - Image Detected 
Trichomes 

Undetected 
Trichomes 

Other objects incorrectly 
predicted as trichomes 

Sub- Image 8 0 0 0 

Sub- Image 9 7 4 0 

Sub- Image 10 37 4 0 

Sub- Image 11 34 4 0 

Sub- Image 12 0 1 0 

Sub- Image 13 4 2 1 

Sub- Image 14 39 8 0 

Sub- Image 15 37 8 0 

Sub- Image 16 10 5 0 

Total 278 53 3 

The results from the testing are then applied to (4) to calculate the total accumulated number of 
trichomes that predicted by model across all sub-images. 
𝑁 = ∑ 𝑇()*

(+)   (4)  

𝑁 =B𝑇(

)*

(+)

 

𝑁 = 0 + 24 + 20 + 0 + 5 + 30 + 33 + 0 + 7 + 37 + 34 + 0 + 5 + 39 + 37 + 10 

𝑁 = 281 

From (4), the total number of trichomes predicted by the model across all subimages is 281 
trichomes. From the above equation, the total number of trichomes predicted by the model across all 
subimages is 281. Details of the number of valid data and the number of incorrectly predicted data 
will be presented in Table 3. 

Table 3. Number of True Positive, False Positive, and False Negative Trichome Detections 

Prediction Value 
True Positive (TP) 278 
False Positive (FP) 3 
False Negative (FN) 53 

 
From Table 3, which details the number of predictions for true positive, false negative, and false 

positive cases, the precision and recall values can be calculated using the following equations: 

Precision =
True	Positive

True	Positive + False	Positive × 100% 

Precision =
278

278 + 3 × 100% 

Precision =
278
281 × 100% 

Precision = 0.98 × 100% 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = 𝟗𝟖% 

 

Recall =
True	Positive

True	Positive + False	Negative × 100% 

Recall =
278

278 + 53 × 100% 
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Recall =
278
331 × 100% 

Recall = 0.839 × 100% 

𝐑𝐞𝐜𝐚𝐥𝐥 = 𝟖𝟑. 𝟗% 

From the calculated precision, 98% of the images predicted to have trichomes contained trichomes, 
while 2% did not. The recall value indicates that the model successfully detected trichomes in 83.9% 
of the images where trichomes were truly present. 

As a comparison, manual detection techniques performed by human researchers, while highly 
accurate under certain conditions, tend to be time-consuming and prone to errors due to fatigue or 
observer subjectivity. In terms of speed and efficiency, YOLOv8 demonstrates a significant 
advantage. Previously, other deep learning approaches such as Mask R-CNN and Faster R-CNN have 
been applied for object detection tasks in various contexts. However, YOLOv8 offers an edge in 
terms of real-time detection speed without sacrificing too much accuracy, making it more suitable 
for real-time applications like large-scale plant monitoring. That said, it is important to note that 
models like Mask R-CNN have an advantage in terms of more precise object segmentation, 
particularly for detecting smaller or hidden trichomes. Therefore, future research could explore 
hybrid methods or combine multiple deep learning approaches to achieve more optimal results. 

4. Conclusion 
The implementation of the YOLOv8 model for detecting and quantifying glandular bulbous type 

trichomes on cultivated potato leaf images was performed quite effectively. The test results using 
one image, which was partitioned into several sub-images, yielded a precision of 98% and a recall of 
83.9%. Among the 16 sub-images tested, there were 3 false positives in sub-images 5 and 13. This 
means that in these sub-images, the model predicted 3 objects as trichomes, but they were not actually 
trichomes. Additionally, there were 53 false negatives, indicating that the model failed to predict 53 
objects that were indeed trichomes. The tuning parameters used in this study were 100 epochs, a 
learning rate of 0.01, a batch size of 16, and an image size of 640. Tuning parameters is crucial to 
enable trial and error until the best model is found. After 100 iterations (epochs) of training, the mean 
average precision (mAP) value at a confidence threshold of 50 was 0.816. The mAP value at 
confidence thresholds of 50 - 90 was 0.38. Details of the loss metrics are as follows: box loss was 
1.408, classification (cls) loss was 0.8149, and distribution focal loss (dfl) is 0.9129. 

This study has shown that the deep learning model employed has significant potential for 
detecting trichomes, particularly glandular bulbous trichomes. However, to enhance detection 
accuracy and efficiency, several future development directions need to be explored. First, researchers 
could consider utilizing more advanced deep learning models, such as deeper CNNs or the latest 
architectures like EfficientNet, which have proven effective in various image recognition tasks. 
These models could provide improved performance in terms of accuracy and processing speed. 
Second, implementing hybrid methods that combine deep learning techniques with traditional image 
processing algorithms may be a solution to enhance detection outcomes. By leveraging the strengths 
of both approaches, the model can become more adaptable to variations in data, such as changes in 
lighting conditions and image angles. Additionally, the findings of this research have broad practical 
implications, particularly in the field of precision agriculture. With the ability to accurately detect 
trichomes, this technology can assist farmers in monitoring plant health and predicting yield 
outcomes. This not only enhances efficiency in crop management but also contributes to reducing 
unnecessary pesticide and fertilizer use, thereby supporting more sustainable agricultural practices. 
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