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 This study forecasted inflation in Indonesia using the Recurrent Neural 
Network Long Short-Term Memory (RNN-LSTM) model, ideal for 
nonlinear, complex time series data. It evaluated the effects of different 
activation functions, such as Logistic, Gompertz, and Hyperbolic 
Tangent (tanh); and weight update methods, such as Stochastic 
Gradient Descent (SGD) and Adaptive Gradient (AdaGrad) on RNN-
LSTM performance. Monthly inflation data from January 2005 to 
December 2023 underwent preprocessing, including normalization and 
autoregressive lag-based input selection. Model accuracy was assessed 
with Root Mean Squared Error (RMSE) and Symmetric Mean 
Absolute Percentage Error (SMAPE). The findings indicated that the 
RNN-LSTM model with the logistic activation function and SGD 
optimization achieved the highest accuracy, outperforming traditional 
models such as Exponential Smoothing (ETS), Autoregressive 
Integrated Moving Average (ARIMA), Feedforward Neural Network 
(FFNN), and Recurrent Neural Network (RNN). Additionally, optimal 
learning rate and epoch values were identified, enhancing model 
stability and precision. In conclusion, the study confirms that the RNN-
LSTM model is effective for inflation forecasting when optimized with 
specific activation functions and optimization methods. It recommends 
further exploration of neuron configurations and alternative models, 
such as the Gated Recurrent Unit (GRU), to improve forecast accuracy.    
    

 

  

1. Introduction  
Forecasting is an attempt to predict future events based on past data. The goal is to produce 

accurate predictions. Good forecasting must have a high accuracy level and the ability to imitate the 
behavior of historical time series data [1]. There are two types of time series forecasting methods: 
statistical methods and machine learning or computational intelligence methods [2]. The statistical 
methods commonly used are Autoregressive Integrated Moving Average (ARIMA) and exponential 
smoothing. However, this method requires data that is linear. Meanwhile, for nonlinear data, the deep 
learning method has better capabilities.  
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One algorithm that is included in the deep learning family is Recurrent Neural Network (RNN). 
RNN is part of the Artificial Neural Network (ANN), where the output from the hidden layer is 
reused as input in the next process [3]. The weakness of the RNN method is that it cannot 
accommodate long-term memory, so it is challenging to remember previous information or what is 
called a vanishing gradient. The vanishing gradient problem is solved using the Long-Short Term 
Memory (LSTM) method. LSTM is an algorithm based on time series and is effective in making 
predictions and can store information for a long time using three types of gates, namely input gate, 
forget gate, and output gate [4].  

Several studies have used LSTM-based RNN methods for various purposes. A study used LSTM 
to predict bitcoin prices and got the best results with an average accuracy of 95.36% on training data 
and 93.50% on testing data [5]. Meanwhile, another study used LSTM to predict PM10 concentrations 
in Lima, Peru, with accurate results for moderate pollution, but less precise for high pollution [6]. 
The LSTM model proved to be better than MLP, especially in predicting critical pollution episodes. 
A Recurrent Neural Network was also used with LSTM and Gated Recurrent Unit (GRU) to predict 
retail sales and found that the LSTM algorithm had the best performance [2]. Another research that 
has been carried out using inflation data is the analysis of inflation rate predictions in Samarinda 
City, East Kalimantan, using the backpropagation neural network method [7]. ANN was used to 
predict the monthly inflation rate in Indonesia method and obtained a low MSE value [8]. The 
monthly inflation rate in Indonesia was also predicted using a non-linear autoregressive neural 
network method with exogenous input and found that the proposed method outperformed other 
models [9]. 

In addition, previous research results have shown that the choice of activation function and 
weight update in the RNN model has a significant impact on the prediction model’s performance 
[10]. RNNs with activation functions such as logistic [11], Gompertz [12] and tanh [13] have proven 
to be more accurate than ReLU activation functions. In the case of prediction, improvising commonly 
used weight update strategies such as Stochastic Gradient Descent (SGD) [14] and Adaptive Gradient 
(AdaGrad) [15] can be used to improve the performance of RNN models. In 2021, a study discussed 
a comparison of various activation functions in artificial neural networks, including Sigmoid, tanh, 
ReLU, and others [16], guiding the choice of the most appropriate activation function for real-world 
applications. In 2022, a study tested 26 alternative activation functions in LSTM for classification. 
The finding showed that several alternative functions, such as modified Elliott and softsign, yielded 
higher accuracy than tanh [17]. Later in 2023, a study proposed the use of the log-sigmoid activation 
function in LSTM for time series data classification, showing improved accuracy with various 
optimization algorithms [18]. These studies highlight the importance of selecting activation functions 
in improving the performance of artificial neural networks. However, there has been no research that 
specifically investigates the impact of selecting activation functions and updating weights in the 
RNN-LSTM model on time series data applications, especially in the context of predicting the 
inflation rate in Indonesia.  

Based on the research above, this research was intended to fill this knowledge gap by conducting 
a comparative study of weight update methods and activation functions in the RNN-LSTM model. 
This research considered two weight updates, namely Stochastic Gradient Descent (SGD) and 
Adaptive Gradient (AdaGrad), to compare the performance of their prediction models. The three 
activation functions are logistic, Gompertz, and tanh. This research aimed to apply the RNN-LSTM 
model to forecast inflation in Indonesia. Inflation is a condition where prices generally continue to 
increase on an ongoing basis, attributable to various factors. In other words, inflation can also be 
interpreted as a continuous process of decreasing the value of the currency [19]. In this research, 
neurons in the input layer for the RNN-LSTM model were proposed based on autoregressive lag with 
a frequency approach. The frequency attribute states the quantity of data in a certain period, usually 
defined per year, such as monthly data (frequency = 12), quarterly data (frequency = 4), quarterly 
data (frequency = 3), semiannual data (frequency = 2), and data annually (frequency = 1). If the 
frequency of the time series data is m, then m sequential autoregressive lags starting from 
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autoregressive lag one is used. At the same time, an evaluation was also carried out on the influence 
of learning rate, number of epoch iterations, optimization method, and activation function. Next, the 
RNN-LSTM model was compared with several models, namely the Exponential Smoothing (ETS) 
model described in [20], the ARIMA model described in [21], the Feed Forward Neural Network 
(FFNN) model described in [22], and the RNN model described in [23]. Meanwhile, the comparison 
of forecasting accuracy was measured using Symmetric Mean Absolute Percentage Error (SMAPE). 

2. Method 

2.1. Recurrent Neural Network (RNN) Model 
RNN is a type of ANN that can see hidden relationships in data in applications, such as voice 

recognition, natural language processing, and time series prediction [3]. In modeling sequence 
problems, RNN is very good to use because it can combine input information as well as trace 
information obtained previously through repeated connections. RNN is said to be a recurrent neural 
network because the output from the previous hidden layer is reused as input data in subsequent 
processing [24]. RNN has a characteristic: in making predictions, it does not only use input at one 
time but requires input from previous input so that the input is interconnected and can provide 
information to the hidden layer [25].  

RNN consists of an input layer, one or more hidden layers, and an output layer [26]. The RNN 
model has one-way information from the input layer to the hidden layer and one-way information 
synthesis from the temporarily hidden layer to the current hidden layer. The architectural model of 
RNN is as follows. 

 
Fig. 1 Recurrent neural network architecture. 

As shown in Fig. 1, the mapping of 𝑆! and 𝑂! can be represented as follows. 
𝑆! = 𝑓(𝑈 × 𝑋! +𝑊 × 𝑆!"#)   (1) 

𝑂! = 𝑔(𝑉 × 𝑆!)   (2) 

where 𝑆! is network memory at the time 𝑡; 𝑈, 𝑉, and 𝑊 are the weight matrices in each layer; 𝑋! and 
𝑂! are input and output at the time 𝑡; 𝑓(… ) and 𝑔(… ) are nonlinear functions. 

2.2. Long-Short Term Memory (LSTM) Model 
LSTM was first proposed by Sepp Hochreiter and Juergen Schmidhuber in 1997. It is a 

development of the RNN model to overcome the vanishing gradient problem when processing long-
term sequential data [27]. The RNN architecture has limitations in handling long-term dependencies 
because it does not store previous information properly, the old, stored memory will be increasingly 
useless and overwritten by new memory, causing a vanishing gradient problem. LSTM can reduce 
this problem by using memory cells to store information over time intervals and using gate units to 
regulate the flow of information in and out of cells so that it can better overcome long-term 
dependencies.  

The LSTM model consists of a series of unique memory cells and replaces neurons in the hidden 
layer of the RNN [28]. The LSTM model filters information through a gate structure to maintain and 
update the state of the memory cell. One memory cell consists of three gates: forget gate, output gate, 
and input gate. The LSTM structure is presented in Fig. 2.  
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Fig. 2 Long-short term memory architecture. 

2.2.1. Forget Gate  
Forget gate is a gate in the LSTM model that determines whether or not the information in the 

cell state will be deleted. This calculation uses the previous output data ℎ!"# and 𝑥! as input data. 
The forget gate equation is formulated in (3). 

𝑓! = 𝜎/𝑊$ ∗ [ℎ!"#, 𝑥!] + 𝑏$7   (3) 

where 𝑓! is a forget gate; 𝜎 is a sigmoid function; 𝑊$ is the weight value for the forget gate; ℎ!"# is 
the output value before the 𝑡th order; 𝑥! is the input value at the time 𝑡; and 𝑏$ is the bias value at 
the forget gate.   

The weight value is formulated in (4).  

𝑊 = 8− #
√&
, #
√&
:  (4) 

where 𝑊 is the weight and 𝑑 is the amount of data. 

2.2.2. Input Gate  
The input gate is a gate that uses two types of activation functions (sigmoid and tanh) and aims 

to select the part that will be updated. The gate input is formulated in (5). 
𝑖! = 𝜎(𝑊' ∗ [ℎ!"#, 𝑥!] + 𝑏')  (5) 

where 𝑖! input gate; 𝜎 sigmoid function; 𝑊% weight value for input gate; ℎ!"# output value before 𝑡th 
order; 𝑥! input value at 𝑡th order, and 𝑏% the bias value at the gate input.  

The new candidate equation is formulated in (6).  
𝐶=! = 𝑡𝑎𝑛ℎ(𝑊( ∗ [ℎ!"#, 𝑥!] + 𝑏()  (6) 

where 𝐶4! is the new value added to the cell state; 𝑡𝑎𝑛ℎ is a hyperbolic tangent function; 𝑊&  is the 
weight value for the cell state; ℎ!"# is the output value before the 𝑡th order; 𝑥! is the input value at 
order 𝑡; and 𝑏&  is the bias value in the cell state. 

After that, the old cell state will be updated to become a new cell state by multiplying the old 
state by the forget gate (𝑓!) to delete the information specified in the forget gate, then the value will 
be added with 𝑖! ∗ 𝐶4! which is the new value to update state, thus producing the cell state equation 
as follows. 

𝐶! = 𝑓! ∗ 𝐶!"# + 𝑖! ∗ 𝐶=!  (7) 

where 𝐶! cell state; 𝑓! forget gate; 𝐶!"# cell state before 𝑡th order; 𝑖! input gate, and 𝐶4! new values 
that can be added to the cell state.   
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2.2.3. Output Gate  
The output gate functions to determine what information will be generated based on the input 

and memory blocks.  The output from the cell state is entered into the tanh layer and then multiplied 
by the sigmoid gate so that the resulting output matches what has been previously decided. The gate 
output equation is formulated as in (8). 
𝑜! = 𝜎(𝑊) ∗ [ℎ!"#, 𝑥!] + 𝑏))  (8) 

where 𝑜! output gate; 𝜎 sigmoid function; 𝑊' weight value for output gate; ℎ!"# output value before 
𝑡th order; 𝑥! input value at 𝑡th order; and 𝑏' bias value at the gate output. 

After getting the value from the gate output, the cell state is placed through tanh. Then, it is 
multiplied by the gate output and sigmoid layer. The 𝑡th order output equation is formulated as 
follows. 
ℎ! = 𝑜! ∗ 𝑡𝑎𝑛ℎ(𝐶!)  (9) 

where ℎ! is the 𝑡th order output value; 𝑜! output gate; 𝑡𝑎𝑛ℎ hyperbolic tangent function, and 𝐶! cell 
state.  

2.3. LSTM Modeling Algorithm 
The analysis in this paper displays the best RNN-LSTM model for predicting inflation in 

Indonesia. The following are the analysis stages in RNN-LSTM modeling.  

a. Determining neurons in the input layer (autoregressive lag) based on data frequency 𝑥, assuming 
that 𝑥 was the time series data to be predicted. If the data frequency 𝑥 is equal to 𝑚, then 
successive autoregressive lags from 1 to 𝑚 are considered autoregressive lags. For example, for 
monthly data it is considered 1: 12 as an autoregressive lag.  

b. Preprocessing data, namely by scaling data or normalizing data. Data normalization was carried 
out using (10): 

𝑦 = *"+',(*)
+/*(*)"+',(*)

  (10)  

where 𝑦 is the value of data normalization; 𝑥 is the data to be predicted; 𝑚𝑖𝑛(𝑥) is the minimum 
predicted data value, and 𝑚𝑎𝑥(𝑥) is the maximum predicted data value. 

c. Splitting data by dividing data into training data and testing data. The scenario for splitting data 
in this research was that the data was divided into training data (from January 2005 to December 
2022) and testing data (from January 2023 to December 2023). 

d. Building the RNN-LSTM model by initializing the required parameters, namely neurons, 
learning rate, epoch, optimization method, activation function, and hypertuning other parameters 
as in [29].  

e. Perform data predictions.  
f. Carrying out the data denormalization process. Data denormalization was carried out using the 

(11): 
𝑥∗ = 𝑦 ∗ [𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)] + 𝑚𝑖𝑛(𝑥)  (11) 

 where 𝑥∗ is the value of data denormalization; 𝑦 is the value of data normalization; 𝑚𝑖𝑛(𝑥) is the 
minimum predicted data value, and 𝑚𝑎𝑥(𝑥) is the maximum predicted data value. 

g. Comparing predicted and actual data using RMSE and SMAPE values. RMSE is a measure used 
to assess how well a predictive model is at predicting value. RMSE measures the difference 
between the value predicted by the model and the actual value, giving more weight to larger 
errors. A lower RMSE value indicates a model that is better at making predictions, because it 
shows that the average prediction error is smaller. A higher RMSE value indicates that the model 
is less accurate in its predictions, as higher values indicate larger errors. RMSE also has the same 
units as the measured data, making interpretation easier. However, RMSE is sensitive to outliers, 
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so it should be considered along with other metrics for a more comprehensive model evaluation. 
RMSE is calculated using (12): 

𝑅𝑀𝑆𝐸 = G#
,
∑ (𝐴' − 𝐹')1,
'2#   (12)  

SMAPE is used to measure accuracy in forecasting models by comparing predicted values with 
actual values. SMAPE overcomes some of the disadvantages of MAPE by avoiding problems 
when the actual value approaches zero. SMAPE provides results in percentages, and a lower 
SMAPE value indicates a more accurate model. The SMAPE value is formulated as in (13). 

𝑆𝑀𝐴𝑃𝐸 = #
,
∑ |4!"5!|

"#!"$"%!"
&

× 100%,
'2#   (13) 

 where 𝐴% is the actual value in the period 𝑖; 𝐹% is the predicted value in period 𝑖; 𝑛 is the number 
of periods (data) used in the calculation.  

h. Forecasting inflation values in Indonesia in January 2023 - December 2023.  

3. Results and Discussion 
This research conducted a case study using inflation rate data in Indonesia. The data observed 

was monthly data from January 2005 to December 2023, as shown in Fig. 3. Training data was carried 
out on the first 216 data (from January 2005 to December 2022), and the last 12 data was used as 
testing data (from January 2023 to December 2023). This data can be found and accessed on the 
Bank Indonesia website.  

 
Fig. 3 Time series plot of Indonesian inflation. 

Next, testing consisted of testing the learning rate, the number of epoch iterations, the 
optimization model by comparing two methods, and the activation function by comparing three 
functions. 

3.1. Learning Rate Testing 
The neurons in the input layer in this research was proposed to be based on an autoregressive lag 

with a frequency approach, where time series data has time and frequency attributes. The time 
attribute states the unit of time from each observation point, while the frequency attribute states the 
quantity of data in a certain period, usually defined per year, such as monthly data (frequency = 12), 
quarterly data (frequency = 4), quarterly data (frequency = 3), semiannual data (frequency = 2), and 
annual data (frequency = 1). Therefore, the number of neurons in the input layer in this study was 12 
neurons (12 months as an autoregressive lag).  
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Next, experiments were carried out with learning rates of 0.001, 0.002, 0.050, 0.100, 0.200, 
0.500, and 0.900. Apart from that, the optimization method used was SGD and 500 epochs. The 
activation function used was the logistic function. Meanwhile, other hypertuning parameters were 
determined in the same way as in [29]. This experiment was conducted to determine the effect of 
learning rate on the learning process and testing data. The results obtained from the learning rate 
experiment can be seen in Table 1.  

Table 1. Impact of Different Learning Rates on SMAPE and RMSE for Training and Testing Data 

Learning 
Rate 

Training Data Testing Data 
SMAPE RMSE SMAPE RMSE 

0.001 0.32809 0.16419 0.27956 0.12744 
0.002 0.27832 0.09724 0.26729 0.10531 
0.050 0.17027 0.06290 0.16393 0.10982 
0.100 0.15518 0.06183 0.16120 0.11569 
0.200 0.15708 0.05983 0.22301 0.14623 
0.500 0.19121 0.08220 0.26478 0.16909 
0.900 0.24173 0.51087 0.15048 0.38976 

Table 1 shows the performance of the RNN-LSTM model with varying learning rates, evaluated 
using SMAPE and RMSE for both training and testing data. The optimal learning rate was 0.050, 
which provided the best balance between accuracy and error, achieving a SMAPE of 16.39% and 
RMSE of 0.10982 for testing data. At higher learning rates (0.200 and 0.500), the model exhibited 
overfitting, showing higher accuracy on training data but poorer performance on testing data. 
Conversely, very small learning rates (0.001 and 0.002) resulted in slower learning and less efficient 
convergence. Therefore, the results highlight that selecting the appropriate learning rate, such as 
0.050, is critical for ensuring both accuracy and stability in model performance. 

3.2. Epoch Iteration Testing 
The experiment was carried out with a learning rate of 0.05, SGD optimization method, logistic 

activation function, and hypertuning other parameters, as in [29]. Meanwhile, autoregressive lag was 
determined in the same way as learning rate testing. This was done to assess the effect of iteration 
size in epochs on the learning process and data testing. The results obtained from the epoch value 
experiment can be seen in Table 2. 

Table 2. Influence of Epoch Values on Training and Testing Data Performance Using Learning Rate  

Epoch Training Data Testing Data 
SMAPE RMSE SMAPE RMSE 

50 0.30334 0.13552 0.40858 0.19479 
100 0.22936 0.09501 0.30254 0.14728 
150 0.19520 0.07952 0.20424 0.10063 
200 0.20143 0.08010 0.27102 0.13865 
250 0.18728 0.07276 0.24238 0.13177 
300 0.17536 0.06903 0.20006 0.11993 
350 0.18293 0.07343 0.22039 0.12858 
400 0.16622 0.06631 0.13611 0.08055 
450 0.17058 0.06629 0.16799 0.12047 
500 0.17020 0.06657 0.19185 0.10862 

Table 2 shows the effect of the number of epochs on the performance of the RNN-LSTM model 
using the SMAPE and RMSE metrics. The best results were obtained at the 400th epoch with 
SMAPE 0.13611 and RMSE 0.08055 on the testing data. At smaller number of epochs, such as 50 
and 100, the SMAPE and RMSE values showed worse performance, while increasing the number of 
epochs up to 400 resulted in a significant increase in accuracy. However, after 400 epochs, further 
increases tended to give more volatile results and sometimes decreased the stability of the model, as 



 ENTHUSIASTIC 139 
International Journal of Applied Statistics and Data Science 

 
https://journal.uii.ac.id/ENTHUSIASTIC  p-ISSN 2798-253X  
  e-ISSN 2798-3153 
  

seen at epochs 450 and 500. Therefore, 400 epochs was the optimal number to achieve a balance 
between accuracy and model stability. 

3.3. Comparing Between Two Optimization Methods 
This research used the SGD and AdaGrad optimization methods. SGD is an iterative learning 

algorithm that uses training data to update the model. This algorithm is iterative, meaning that each 
step will try to improve the model parameters slightly. Each iteration involves using the model with 
the current parameters to make predictions on some training data, comparing the predictions with the 
expected results, calculating the error, and using the error to update the model parameters [30]. 
AdaGrad is a derivative algorithm of SGD that adapts to learning rates with smaller parameters and 
model updates. These two methods are methods that are often used for LSTM-based RNN models. 

Furthermore, both optimization methods used a learning rate of 0.05 and epochs of 200 to get 
more detailed training from the two optimization methods. The activation function used was a logistic 
function and hypertuning other parameters, as in [29]. Meanwhile, autoregressive lag was determined 
similarly to learning rate testing. Test results with the two optimization methods can be seen in Table 
3. 

Table 3. Performance Comparison of SGD and AdaGrad Optimization Methods 

Optimization  Training Data Testing Data 
SMAPE RMSE SMAPE RMSE 

SGD 0.15968 0.06149 0.15505 0.11254 
AdaGrad 0.79070 0.57503 0.92814 0.63431 

Table 3 shows that SGD outperforms AdaGrad in terms of performance on both training and 
testing data. SGD had lower SMAPE and RMSE (SMAPE: 0.15968; RMSE: 0.06149 for training 
and SMAPE: 0.15505; RMSE: 0.11254 for testing) compared to AdaGrad (SMAPE: 0.79070; 
RMSE: 0.57503 for training and SMAPE: 0.92814; RMSE: 0.63431 for testing). This shows that 
SGD produces more accurate and stable predictions than AdaGrad. 

3.4. Comparing Between Three Activation Functions 
This research used the logistic activation function, Gompertz, and hyperbolic tangent (tanh). 

These three activation functions are activation functions that are often used for the forecasting model 
learning process. The three activation functions used a learning rate of 0.05 and an epoch of 200 to 
obtain more detailed training from the SGD optimization method. Meanwhile, the autoregressive lag 
and hypertuning parameters were determined similarly to testing optimization methods. The test 
results with the three activation functions can be seen in Table 4. 

Table 4. Impact of Different Activation Functions on Training and Testing Data Performance 

Activation 
Function 

Training Data Testing Data 
SMAPE RMSE SMAPE RMSE 

Logistic 0.15968 0.06149 0.15505 0.11254 
Gompertz 0.16029 0.06564 0.18196 0.11010 
Tanh 0.60584 0.39279 0.85418 0.54439 

Based on Table 4, the logistic activation function performed best, with the lowest SMAPE and 
RMSE values in both training (SMAPE: 0.15968, RMSE: 0.06149) and testing (SMAPE: 0.15505, 
RMSE: 0.11254) data, indicating more accurate predictions. Gompertz was slightly behind with a 
higher SMAPE on testing (0.18196) but had a lower testing RMSE (0.11010). In contrast, tanh 
showed the worst performance with a much higher SMAPE and RMSE, making it a less suitable 
function for this dataset. 

Next, the best RNN-LSTM model obtained was compared with several models, namely the 
Exponential Smoothing (ETS) model described in [20], the ARIMA model described in [21], the 
FFNN model described in [22], and the RNN model described in [23]. The comparison results of 
empirical studies can be seen in Table 5 for the best RNN-LSTM model with several models. The 
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empirical research showed that RNN-LSTM performed best with the lowest SMAPE (0.14570) and 
lowest RMSE (1.24531), signaling the most accurate and stable prediction. RNN followed with a 
fairly good performance (SMAPE 0.16282 and RMSE 2.14246), while traditional models such as 
ETS and ARIMA had higher SMAPE and RMSE, indicating less accurate predictions. FFNN 
performed the worst with a SMAPE of 0.38357 and RMSE of 1.63286, indicating the highest error 
rate among all models compared. Overall, the RNN-LSTM outperformed the other models in 
predicting inflation. A comparison of graphic illustrations in the form of plots of actual data and 
testing data (out-sample forecasting) is shown in Fig. 4. 

Table 5. Comparative Performance of RNN-LSTM, ETS, ARIMA, FFNN, and RNN Models on Monthly 
Forecasting  

Month Actual 
Data 

RNN-
LSTM 
Model 

ETS Model ARIMA 
Model 

FFNN 
Model RNN Model 

Jan 2023 5.28 9.35 2.61 2.54 2.53 12.5 
Feb 2023 5.47 6.10 2.61 2.54 2.39 4.03 
Mar 2023 4.97 5.59 2.61 2.54 2.41 4.51 
Apr 2023 4.33 4.82 2.61 2.54 2.55 4.41 
May 2023 4.00 4.37 2.61 2.54 2.42 4.08 
Jun 2023 3.52 3.75 2.61 2.54 2.49 3.45 
Jul 2023 3.08 3.45 2.61 2.54 2.54 3.13 
Aug 2023 3.27 3.06 2.61 2.54 2.31 2.82 
Sep 2023 2.28 2.84 2.61 2.54 2.48 2.79 
Oct 2023 2.56 2.54 2.61 2.54 2.42 2.28 
Nov 2023 2.86 2.33 2.61 2.54 2.23 2.36 
Dec 2023 2.61 2.37 2.61 2.54 2.22 2.58 
SMAPE 0.14570 0.32133 0.33857 0.38357 0.16282 
RMSE 1.24531 1.51180 1.55994 1.63286 2.14246 

 
Fig. 4 Plot actual data and out-sample forecasting using the RNN-LSTM model and several models for 

inflation rate data in Indonesia. 
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4. Conclusion 
Based on the results of the analysis, the frequency approach in the RNN model based on LSTM 

can provide the best results for monthly data on the inflation rate in Indonesia. These results indicate 
that the frequency approach is an effective way to increase forecasting accuracy. On the other hand, 
learning rate testing showed that the optimal value for testing data accuracy was 0.05, with a 
significant difference at a larger learning rate. Higher epochs improve accuracy, but too large epochs 
can make the model less stable. In addition, the SGD optimization method was proven to be superior 
to AdaGrad in terms of error and accuracy, with much lower SMAPE values and higher accuracy on 
training and testing data. Meanwhile, the logistic activation function showed slightly better accuracy 
than the Gompertz function, even though the Gompertz function had a lower error value. Finally, the 
best RNN-LSTM model tested showed superior results compared to other models (ETS, ARIMA, 
FFNN, and RNN), with the lowest SMAPE and RMSE value on the testing data. Further research 
can be focused on the influence of the number of neurons in the input layer using a different approach 
to the RNN-LSTM model and comparing it with other models, such as Gated Recurrent Unit (GRU) 
based RNN.  
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