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ARTICLE INFO ABSTRACT

Keywords

Daily Temperature Accurate temperature forecasting in Norway is significant for
GRU-Based Time Series Prediction

Climate Pattern Analysis environmental stewardship and disaster management, in addition to

Er%rdvlvs%ézn Regional Temperature providing essential support for critical sectors, including agriculture,
urban development, and energy resource management. This study
employed the gated recurrent unit (GRU) to augment the precision of
temporal temperature forecasts. After that, it was used to project
temperatures for seven days. The dataset, obtained from
https://www.yr.no/nb, comprised records of minimum and maximum
temperatures spanning from February 1, 2018, to December 31, 2024.
The data was partitioned, with 80% allocated for training and 20%
designated for testing. Utilizing a training regimen of 20 epochs
alongside a three-day lookback interval, the model attained R? scores
of 0.82 for minimum temperature predictions and 0.86 for maximum
temperature forecasts. These results underscore the GRU model’s
capacity to accurately capture daily temperature variations and produce
dependable predictions. Given its commendable performance on
training and testing datasets, the GRU model is particularly suitable for
temperature forecasting.

1. Introduction

Climate change and its associated effects have underscored the necessity for precise temperature
forecasting. It is an indispensable instrument for tackling the multifaceted challenges inherent in
environmental management, agricultural practices, energy resource management, and urban
development. The evolving climatic patterns, characterized by an increase in the frequency of
extreme meteorological occurrences and temperature deviations, necessitate the implementation of
exacting forecasting methodologies to alleviate risks and refine decision-making processes.

Norway, characterized by its heterogeneous climatic zones from coastal regions influenced by
the North Atlantic Ocean to its inland and Arctic territories, poses distinctive challenges for
temperature forecasting. The nation’s intricate topographical features, encompassing fjords,

https://journal.uii.ac.id/ENTHUSIASTIC p-ISSN 2798-253X
e-ISSN 2798-3153



ENTHUSIASTIC 10
International Journal of Applied Statistics and Data Science

mountainous terrains, and valleys, further complicate predicting temperature variations across its
diverse regions. These geographical attributes exert considerable influence on localized weather
phenomena, engendering microclimates that necessitate the application of highly localized and
sophisticated forecasting methodologies.

The precision of temperature forecasting in Norway is imperative for effective environmental
and disaster management and bolstering critical sectors such as agriculture, where accurate
temperature information is crucial for strategic crop planning and frost mitigation. Furthermore,
urban planning and infrastructure development domains increasingly rely on dependable climate
forecasts to efficiently address heating, cooling, and energy requirements. In Norway’s Arctic
regions, the significance of forecasting is amplified as rising temperatures yield substantial
ramifications for sea ice, permafrost integrity, and biodiversity, thereby impacting both local
populations and global climatic systems [1], [2]. Recent advancements in statistical techniques and
machine learning present promising avenues for augmenting the accuracy of temperature forecasts
in Norway. By amalgamating historical climatic data with state-of-the-art modeling approaches,
researchers are better equipped to account for the intricate interactions among the myriad factors
contributing to temperature fluctuations. This progression harbors the potential to bolster climate
resilience and sustainability initiatives nationwide.

Traditional statistical methodologies frequently prove inadequate in elucidating the intricate,
nonlinear interrelationships characteristic of meteorological data. Traditional methodologies
generally depend on linear assumptions and simplistic frameworks that inadequately capture the
intricate nature of environmental phenomena. For example, although linear regression has served as
the conventional instrument for delineating relationships among meteorological variables, empirical
studies have indicated that this methodology frequently proves inferior to more sophisticated
machine learning approaches capable of modeling intricate and multifactorial data interactions [3]—
[5]. In response to these limitations, machine learning methodologies, notably gated recurrent unit
(GRU), have emerged as formidable instruments for predicting time series, providing enhanced
accuracy and efficiency compared to traditional models. As a specific variant of recurrent neural
networks (RNNs), GRU is purposefully constructed to adeptly manage sequential data by alleviating
complications associated with vanishing gradients, which are typically prevalent in conventional
RNN frameworks. GRU streamlines the architecture of long short-term memory (LSTM) networks
by integrating the input and forget gates into a singular update gate, thereby diminishing
computational complexity whilst preserving performance [6]. This feature renders GRU especially
advantageous for applications demanding real-time predictions, such as temperature forecasting,
wherein timely and precise data is vital for informed decision-making.

Recent scholarly investigations have elucidated the efficacy of GRUs within diverse contexts of
temperature forecasting. For instance, previous research formulated a GRU-based model aimed at
short-term forecasting of wind speed and temperature, attaining significant enhancements in
predictive accuracy when juxtaposed with conventional methodologies [7]. In a similar vein, other
research employed GRU to the predict the sea surface temperature, thereby demonstrating their
proficiency in effectively managing sparse datasets and generating dependable forecasts [8]. These
results accentuate the potential of GRU to augment temperature prediction models, particularly in
regions such as Norway, where environmental conditions exhibit considerable variability.
Furthermore, the amalgamation of GRU with supplementary techniques, including attention
mechanisms, has yielded further advancements in their predictive capabilities. Attention mechanisms
facilitate models in concentrating on pertinent input data segments, thereby enhancing the GRUs
capacity to assimilate historical temperature patterns and improving its aptitude for capturing long-
term dependencies [9]. This is especially pertinent for temperature forecasting; wherein antecedent
weather conditions can substantially influence forthcoming temperatures.

This paper presents an innovative methodology for forecasting temperature variations in Norway
by utilizing a model grounded in GRUs. By capitalizing on historic temperature datasets and
integrating pertinent meteorological factors, the authors aimed to establish a resilient predictive
framework capable of delivering precise and prompt temperature prognostications. While traditional
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statistical methodologies such as autoregressive—moving-average (ARMA) or autoregression (AR)
demonstrate efficacy for stationary and linear datasets, the implementation of GRUs in this scatter
explicitly to the intricate, nonlinear, and dynamic characteristics inherent in meteorological data.
Temperature fluctuations in Norway reveal pronounced seasonality and circumstances that
traditional linear methodologies might frequently fail to encapsulate adequately. GRU proficiently
navigates these complexities by effectively capturing long-term dependencies and nonlinear
interrelations within sequential data, devoid of stringent stationarity assumptions or the necessity for
extensive feature engineering.

Furthermore, GRU proficiently tackles prevalent challenges faced by neural networks, such as
the vanishing gradient dilemma, thereby augmenting their capacity to accurately model long-term
climatic shifts. Consequently, the originality of this investigation resides in the practical application
of GRU-based forecasting to Norwegian temperature datasets, offering a robust and pragmatic
alternative to classical methodologies and yielding significant insights for agriculture, energy
management, and environmental planning.

2. Materials and Methods

The data used in this study was secondary data obtained from the website https://www.yr.no/nb.
The variables included the minimum and maximum temperatures from February 1, 2018, to
December 31, 2024. Minimum temperature denotes the lowest temperature documented throughout
a designated timeframe, typically assessed during the nocturnal hours or in the early morning when
thermal readings are prone to decline. This temperature is of paramount importance for evaluating
frost risk, which can profoundly influence agricultural methodologies and crop viability. For
example, comprehending the minimum temperature facilitates farmers’ implementation of frost
mitigation tactics to safeguard sensitive crops against potential damage [10]. Conversely, maximum
temperature signifies the highest temperature recorded within the identical timeframe, usually
occurring in the afternoon when solar radiation reaches its zenith. Maximum temperatures are
essential for assessing heat stress conditions, which can adversely impact both human health and
agricultural efficacy. Elevated maximum temperatures can result in increased evaporation rates,
affecting water availability for crops and livestock [11], [12].

2.1. Gated Recurrent Unit

GRU is a type of RNN architecture similar to LSTM. Like LSTM, GRU is designed to process
sequential data by allowing information to be remembered or forgotten selectively over time.
However, the architecture of a GRU is more straightforward than an LSTM, with fewer parameters,
making it easier to train and more computationally efficient [13]. GRU consists of interconnected
units that can remember information from the past. Fig. 1 depicts the architecture of a GRU,
emphasizing its two fundamental gates: the reset gate and the update gate. These gates proficiently
regulate the dissemination of information throughout the network, alleviating the vanishing gradient
phenomenon frequently observed in artificial neural networks. GRU has been proven effective in
various sequential data processing tasks such as speech recognition, natural language modeling, and
stock price prediction [14].

reset gate
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P

b

update gate

Fig. 1 GRU architecture.
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A gate is a mechanism used to regulate the flow of information in neural networks. It utilizes a
binary sigmoid function (o) and multiplication operations with input values (x). The binary sigmoid
function acts as an enable function that is very effective for processing data with a range of values
between 0 and 1.

The reset gate denotes the number of previous gates present. At the same time, the update gate
determines the number of candidates it has determined to enter the new hidden state.

Reset gate:

re = o(Wp[he—1, xc] + by) (D
Update gate:

2y = oW [he—y, %] + b,) 2
Hidden state:

h, = tanh Wy,x, + U, (r,®h,_,) + by, 3)
h; = (1 —z)Oh,_, + 2,0k, 4)

In (1)—(4), o represents the sigmoid activation function, which maps input values to a range between
0 and 1, thereby controlling the flow of information within the neural network gates. The
term x; denotes the input data at time step t, while A, refers to the candidate value used for updating
the hidden state. The hidden state, indicated by h;, is the output of the GRU cell at each time step.
The parameters of W,., W,, and W, are weight matrices applied to the inputs and previous hidden
states during computation. The hyperbolic tangent function, denoted by tanh, introduces nonlinearity
to the model, allowing it to learn complex temporal patterns. Lastly, b,, b,, and by, represent bias
terms that adjust the activation thresholds for the reset, update, and hidden gates, respectively.

2.2. The Evaluation Metrics

The evaluative metrics, which encompass the mean absolute error (MAE), the mean absolute
percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination
(R?), are indispensable for the appraisal of regression models and various predictive methodologies.
Each metric provides distinct perspectives on model efficacy, thereby making comprehending their
definitions, formulations, and specific applications vital.

2.2.1. Mean Absolute Error (MAE)

MAE measures the average size of the discrepancies between predicted values and actual
outcomes, independent of the sign of these discrepancies. It is determined through (5).

1 ~
MAE = ;Z?:ﬂyl' =il (%)

where y; represents the actual observed value, y; denotes the predicted value, and n signifies the
total number of observations. The application of MAE is advantageous as it furnishes a clear
interpretation of the average deviation in the same units as the data under consideration, thereby
rendering it comprehensible [15], [16].

2.2.2. Mean Square Error (MSE)

MSE is an essential metric within statistical estimation theory. It encapsulates the mean of the
squares of discrepancies, specifically, the mean squared deviation between estimated values and their
corresponding actual values. This statistical measure is essential across many disciplines, such as
signal processing, machine learning, and statistical inference, as it offers a quantitative framework
for evaluating the precision of estimators. Mathematically, the MSE is expressed in (6).

MSE ==Y, (y; = ). (©6)

MSE evaluates an estimator’s efficacy under conventional conditions and elucidates its intrinsic bias
and variance. For example, estimators exhibiting a low MSE possess advantageous characteristics
such as consistency and unbiasedness, which are essential for robust statistical inference [17], [18].
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2.2.3. Root Mean Square Error (RMSE)

RMSE quantifies the square root of the mean of the squared discrepancies between forecasted
values and actual measurements:

RMSE = % i=1 (i = 9% (M

RMSE assigns a disproportionately higher significance to more significant discrepancies owing to
the squaring of the deviations, rendering it exceptionally advantageous in scenarios where substantial
errors are to be avoided [15], [19]. Its application spans a multitude of disciplines to validate
predictive models because of its heightened sensitivity to significant deviations, thereby aiding in the
assurance of robustness across various domains, including environmental research and clinical
forecasting [20], [21].

2.2.4. Coefficient of Determination (R?)

R? serves as a quantitative measure of the extent to which the independent variables elucidate
the variability inherent in the dependent variable, which can be mathematically expressed as in (8).
Ll =902
2 = —ci=i U
Re=1 L i=7)? ®
where y denotes the arithmetic mean of the observed values. An R? statistic approaching 1 indicates
that a substantial proportion of the variance is elucidated by the independent variables within the
constructed model [16], [20]. Despite its prevalent application, caution is warranted in interpreting
R?, as it does not signify a causal relationship and may be artificially enhanced through overfitting.

3. Results and Discussion

Fig. 2 depicts the temperature fluctuations in Norway from February 1, 2018, to December 31,
2024. The graphical representation effectively delineates the seasonal variations, emphasizing a
pronounced cyclical trend in minimum and maximum temperature readings.

Temperature Over Time

oote

Fig. 2 Temperature over time.

Throughout the annual cycle, Norway experiences a considerable spectrum of thermal
variations, with minimum temperatures predominantly fluctuating between 0°C and 10°C. The most
extreme temperature recorded was -22.2°C on February 28, 2018. Such drastic temperature variances
underscore the nation’s distinctive seasonal dichotomies, characterized by a pronounced thermal
disparity between the frigid winters and the comparatively temperate summers.
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Conversely, the maximum temperatures usually oscillate from 10°C to 30°C. The apex
temperature documented in 2018 transpired on July 27, when the thermometer ascended to 31.4°C,
delineating the zenith of the annual heat wave. This contrast between the temperatures experienced
during summer and winter encapsulates Norway’s formidable climatic challenges, influenced by its
heterogeneous geographical characteristics and proximity to the Arctic region.

3.1. Predictive Modeling

In the execution of GRU analysis, it is imperative to standardize the data using a min-max scaler.
Therefore, the dataset was partitioned into training and testing subsets. This study used 2,526 data
points about minimum and maximum temperatures. The dataset was allocated 80% for training data,
and 20% testing data. Specifically, 2,020 training data points spanning from February 1, 2018, to
August 13, 2023, with the remaining 506 data points allocated for testing purposes. Moreover, the
configuration of the number of timesteps to be considered was 3, indicating that the temperature
prediction for the subsequent period utilized data from the preceding three days.

The parameters of the GRU architecture, as defined by the researcher, are comprehensively
presented in Table 1. The configuration of the GRU model encompasses an input layer characterized
by the number of time steps and the number of input features. It comprises two GRU layers, each
consisting of 64 units and utilizing hyperbolic tangent (tanh) activation functions, interspersed with
dropout layers (rate = 0.2) to alleviate the risk of overfitting. The initial GRU layer is designed to
return sequences, whereas the subsequent layer does not. Following this, a dense layer with 32 units
activated by the rectified linear unit (ReLU) function was included, culminating in an output dense
layer (linear activation) that forecasts minimum and maximum temperatures. The model utilized the
Adam optimization algorithm alongside the MSE as its loss function.

Table 1. Parameter of GRUs

Layer Type Unit/Nodes Activation Other Parameters

Input layer Input - - n_steps: the number of time steps
x_train.shape[2]: the number of features (e.g.,
Min.Temp and Max.Temp)

Layer 1 GRU 64 tanh return_sequences=True for passing to the
next GRU layer

Dropout layer 1 Dropout - - Rate: 0.2

Layer 2 GRU 64 tanh return_sequences=False: the final recurrent
layer

Dropout layer 2 Dropout - - Rate: 0.2

Layer 3 Dense 32 ReLU -

Output layer Dense X_train.shape[2] Linear Outputs Min. Temp and Max.Temp

Compilation - - - Optimizer: Adam

Loss: Mean Squared Error

The model underwent training for 20 epochs utilizing a batch size of 32, thereby facilitating an
equitable balance between computational efficiency and performance.

The configuration of critical parameters within the GRU model encompassing the number of
timesteps (lookback duration), epochs, batch size, number of GRU units, and dropout rates were
established through a rigorous methodology of hyperparameter optimization. In particular, a
synthesis of empirical experimentation alongside validation performance assessment was
implemented. The selection of a lookback duration of three days was predicated on initial exploratory
analysis, which revealed that temperature fluctuations in Norway demonstrated considerable short-
term autocorrelation so that a three-day interval proved effective for encapsulating vital temporal
dependencies without excessively augmenting computational complexity.

Hyperparameters, including the number of epochs, batch size, GRU units, and dropout rate, were
ascertained through iterative experimentation and the evaluation of model performance indicators,
predominantly validation loss. The chosen configuration (20 epochs, a batch size of 32, 64 units per
GRU layer, and a dropout rate of 0.2) represented an optimal equilibrium among model complexity,
computational efficiency, and predictive accuracy. An escalation in the number of epochs or units
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beyond this configuration yielded minimal enhancements in performance while concurrently
elevating the risk of overfitting. Conversely, a reduction in epochs or units inadequately captured the
intricacies of temperature variations.

Model Loss

—— Training Loss
0.05 4 —— Validation Loss

0.04

2 0.03 A

0.02 A

0.01 1 R
- ee——\ ) _

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Fig. 3 Model loss for minimum temperature

In Fig. 3, the observed decline in training and validation losses during the initial epochs is substantial,
indicating that the model is rapidly acquiring the capacity to reduce errors. Following approximately
five epochs, both losses exhibit relative stability devoid of considerable overfitting (i.e., the training
loss does not significantly fall below the validation loss). The continuous alignment of the validation
loss with the training loss suggests that the model can generalize to previously unseen data without
exhibiting significant overfitting.

Model Loss
—— Training Loss
0.025 - —— Validation Loss
0.020 A
]
S 0.015 -
0.010 1
0.005 1 —

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Fig. 4 Model loss for maximum temperature.

The discrepancy between the validation and training loss remained minimal throughout the
epochs, implying that the model can generalize to previously unencountered data. Both loss metrics
attained stabilization at relatively low magnitudes, and the terminal loss values were notably
diminutive, signifying the model’s commendable performance. Based on Fig. 4, the minor oscillation
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observed in the validation loss (for instance, around epoch 15) is characteristic and signifies the
inherent variability in the model’s performance on the validation dataset.

The evaluative metrics of the predictive model for minimum temperature exhibit a notable level
of predictive accuracy. Specifically, for the training dataset, the MAE was recorded at 2.31, the MSE
at 9.04, and the RMSE at 3.01, accompanied by a coefficient of R? of 0.82. In the context of maximum
temperature data, the model demonstrated a slight enhancement, presenting an MAE of 2.21, an MSE
of 8.62, an RMSE of 2.94, and an R? of 0.86. These findings imply that the model exhibits proficient
generalization capabilities when applied to novel data, as evidenced by consistently low error rates
and R? values indicating a robust correlation between the predicted and actual temperature values.
The negligible discrepancy observed between the training and testing performance further
substantiates the assertion that the model is not afflicted by overfitting, thereby establishing it as a
dependable predictor for both minimum and maximum temperature outcomes.

Temperature Prediction using GRU

—— Actual Min.Temp.
Predicted Min.Temp.

f’m iy,
ﬂ’\f‘“ I

Temperature
|
o
e
—
g

T T T T T T T T T
2023-09 2023-11 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
Date

Fig. 5 Minimum temperature prediction.

Temperature Prediction using GRU

30 A —— Actual Max.Temp.

{‘“..'f'\,r‘f" “' Wl “\ ';V' {\"’
[ N \\ \\f

Temperature

\ I '\u’
ik Wi

2023-09 2023-11 2024-01 2024-03 2024-05 2024-07 2024-09 2024-11 2025-01
Date

-10 1

Fig. 6 Maximum temperature prediction.

Fig. 5 and Fig. 6 present graphical representations that delineate the efficacy of a GRU model in
forecasting both minimum and maximum temperature values over a temporal continuum for
validation datasets. Fig. 5 juxtaposes the actual minimum temperature readings (depicted in blue)
against the model’s projected values (illustrated in orange). In contrast, Fig. 6 offers a comparable
analysis for maximum temperature readings. Both graphical depictions demonstrate a robust
correspondence between the observed and projected values, indicating the model’s adeptness in
accurately capture seasonal patterns and temperature variations. The performance evaluation metrics
substantiate this assertion, as evidenced by the low MAE, MSE, and RMSE values, indicating a
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negligible divergence between the forecasts and the empirical data. The elevated R? coefficients
(ranging from 0.82 to 0.85) signify that the model elucidates a considerable fraction of the variability
inherent in the temperature dataset, thereby underscoring its proficiency in predicting temperature
trends.

4. GRU Prediction for the Future

Since the GRU model demonstrates a high accuracy for training and testing data, it is well-suited
for forecasting temperature. Therefore, it was used to predict temperature for 7 days, from January 1
until January 7, 2025 (Table 2).

Table 2. Temperature Prediction for Seven Days

Date Minimum Temperature Maximum Temperature
Prediction Prediction
January 1, 2025 -3.52°C 0.45°C
January 2, 2025 -3.55°C 0.64°C
January 3, 2025 -3.76°C 0.53°C
January 4, 2025 -3.87°C 0.48°C
January 5, 2025 -3.96°C 0.45°C
January 6, 2025 -4.05°C 0.42°C
January 7, 2025 -4.13°C 0.38°C

The forecasts for the temperature during the first week of January 2025 predicted that Norway
would encounter conventional winter climatic conditions. As illustrated in the meteorological
predictions, the anticipated minimum temperature was projected to fluctuate between -3.52°C and -
4.13°C, whereas the maximum temperature was expected to range from 0.38°C to 0.64°C. These
temperature metrics are consistent with the winter season in Norway, which is typified by frigid
temperatures, limited daylight hours, and frequent snowfall occurrences across various regions. The
progressive decline in temperature throughout the seven-day timeframe implies a sustained cold
trend, reinforcing the seasonal meteorological patterns anticipated during this year.

In practice, fine-tuning is typically preferred when revising an extant time-series model, owing
to its computational efficiency and the robustness of the resultant outputs. A pretrained GRU model
was utilized in the present investigation. Its training was extended over additional epochs with either
exclusively novel data or a combination of recent historical data and the newly acquired dataset. This
methodology substantially augments computational efficiency by capitalizing on previously acquired
patterns, facilitating the model’s rapid adaptation to contemporary data trends. However, the fine-
tuning process necessitates meticulous oversight and validation protocols to guarantee that the model
effectively assimilates new information while avoiding the pitfalls of overfitting and the potential
deterioration of the generalization capabilities established during the initial training phase.

5. Conclusion

The GRU model has been successfully utilized to develop a predictive model for average
minimum and maximum temperatures based on time series data. Multiple experiments evaluating
performance metrics on training and test datasets conclude that the GRUs model, trained on 2020
observations and tested on 526 data points, provides reliable temperature predictions. Using a 20-
epoch training process and considering data from the previous three days to predict the next day’s
temperature, the model achieved an R? score of 0.82 for minimum and 0.86 for maximum
temperatures. These results demonstrate the GRU model’s effectiveness in capturing daily
temperature fluctuations and making accurate forecasts.
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