Main Article Content

Abstract

Indonesia is a country with a large population. Based on the results of the 2020 census, Indonesia's population ranks fourth in the world. The Indonesian government has made a policy to reduce population growth, namely the Family Planning Program or Keluarga Berencana (KB). One of the areas that did not escape the target was the DIY. Based on BKKBN DIY data, there is a significant difference between the number of active KB participants and the number of couples of childbearing ages, the number of KB equipment and the number of KB health facilities that exist between sub-districts in Sleman Regency. Then the sub-district classification is carried out based on the 2020 KB data in Sleman Regency using the K-Medoids Clustering method. This study aims to see the sub-district grouping used as a reference by the government in increasing active KB participants in the community to overcome the population in Yogyakarta, primarily focusing on Sleman. The categories in each cluster, namely Cluster 1, which consists of 6 sub-districts, have a high level of KB active participants, couples of reproductive ages, KB equipment, and KB health facilities. Then Cluster 2, which consists of 6 sub-districts, has a medium level of KB active participants, couples of reproductive ages, KB equipment, and KB health facilities. While Cluster 3 consists of 5 sub-districts, where KB active participants, teams of reproductive age, KB equipment, and KB health facilities are low level.

Keywords

Family Planning Program K-Medoids Clustering Sleman Regency

Article Details

Author Biographies

Syintya Febriyanti, Universitas Islam Indonesia, Indonesia

 

 

Jaka Nugraha, Universitas Islam Indonesia, Indonesia

 

 

How to Cite
Febriyanti, S., & Nugraha, J. (2022). Application of K-Medoids Clustering to Increase the 2020 Family Planning Program in Sleman Regency. Enthusiastic : International Journal of Applied Statistics and Data Science, 2(1), 10–18. https://doi.org/10.20885/enthusiastic.vol2.iss1.art2

References

  1. N. Atthina, & L. Iswari, “Klasterisasi Data Kesehatan Penduduk Untuk Menentukan Rentang Derajat Kesehatan Daerah Dengan Metode K-Means”, Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 2014.
  2. Aqmal, Romi, “Pendidikan Keluarga dan Partisipasi Masyarakat pada Program Keluarga Berencana di Masa Pandemi Covid-19 Desa Kerandin Kecamatan Lingga Timur Kabupaten Lingga”, Journal of Education and Teaching, 2020.
  3. Badan Pusat Statistik, “Potret Sensus Penduduk 2020 Menuju Satu Data Kependudukan Indonesia”, Retrieved from Badan Pusat Statistik: https://www.bps.go.id/, on 20 April 2020.
  4. Badan Pusat Statistik Provinsi D.I. Yogyakarta, Retrieved from Badan Pusat Statistik: https://yogyakarta.bps.go.id/, on 25 April 2022.
  5. P. Tan, M. Steinbach, and V. Kumar, “Introduction to data mining,” AddisonWesley, Boston, 2006.
  6. J. Supranto, “Analisis Multivariat: Arti Dan Interpretasi”, Jakarta: PT. Rineka Cipta, 2004.
  7. J. K. Han, “Data Mining: Concept And Techniques”, Waltham: Morgan Kauffman Publisher, 2006.
  8. Imam Ghozali, “Aplikasi Analisis Multivariate Dengan Program IBM SPSS 21 Update PLS Regresi”, Semarang : Badan Penerbit Universitas Diponegoro, 2003.
  9. A. Widarjono, “Analisis Statistika Multivariat Terapan”, Yogyakarta: UPP STIM YKPN, 2010.
  10. W. R. Sukma, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 di Indonesia”, Jurnal Teknologi Informasi, vol. 4, 2020.