Main Article Content

Abstract

Tourism is an important sector that significantly contributes to the economy, so the tourism sector is a priority development program. International tourist arrivals indirectly contribute to the country's economic growth. The government has an important task to increase the number of foreign tourist visits. One way to encourage an increase in foreign tourist arrivals is by forecasting. In general, the time series data for the arrival of foreign tourists has a seasonal pattern. The forecasting method that can model seasonal data is SARIMA. This study aims to predict the arrival of foreign tourists in Indonesia using the SARIMA model. Forecasting results show that the appearance of foreign tourists to Indonesia has increased every period.

Keywords

Tourism International Tourist Time Series Forecasting SARIMA

Article Details

Author Biographies

Deden Nurhasanah , Universitas Islam Indonesia, Indonesia

 

 

Aurielle Maulidya Salsabila , Universitas Islam Indonesia, Indonesia

 

 

Mujiati Dwi Kartikasari, Universitas Islam Indonesia, Indonesia

 

 

How to Cite
Nurhasanah , D. ., Salsabila , A. M. ., & Kartikasari, M. D. (2022). Forecasting International Tourist Arrivals in Indonesia Using SARIMA Model. Enthusiastic : International Journal of Applied Statistics and Data Science, 2(1), 19–25. https://doi.org/10.20885/enthusiastic.vol2.iss1.art3

References

  1. Indonesia, "Undang-Undang Republik Indonesia Nomor 10 Tahun 2009 Tentang Kepariwisataan," Indonesia, Jakarta, 2009.
  2. Indonesia, "Peraturan Pemerintah Republik Indonesia Nomor 67 Tahun 1996 Tentang Penyelenggaraan Kepariwisataan," Indonesia, Jakarta, 1996.
  3. Indonesia, "Undang-Undang Nomor 9 Tahun 1990 Tentang Kepariwisataan," Indonesia, Jakarta, 1990.
  4. Indonesia Investments, "Industri Pariwisata Indonesia," [Online]. Available: https://www.indonesia-investments.com/id/bisnis/industri-sektor/pariwisata/item6051. [Accessed 20 12 2021].
  5. BPS, "Istilah," Badan Pusat Statistik, [Online]. Available: https://www.bps.go.id/istilah/index.html?Istilah_page=68&Istilah_sort=keyword_ind. [Accessed 20 12 2021].
  6. R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice, 2nd edition, Melbourne, Australia: OTexts, 2018.
  7. D. K. Silalahi, "Forecasting of Poverty Data Using Seasonal ARIMA Modeling in West Java Province," Jurnal Teori dan Aplikasi Matematika, vol. 4, no. 1, pp. 76-86, 2020.
  8. P. Y. A. Andoh, C. K. K. Sekyere, L. D. Mensah and D. E. K. Dzebre, "Forecasting Electricity Demand In Ghana With The Sarima Model," Journal of Applied Engineering and Technological Science, vol. 3, no. 1, 2021.
  9. T. Berhane, N. Shibabaw, G. Awgichew and T. Kebede, "Modeling and Forecasting Rainfall in Ethiopia," International Journal of Computing Science and Applied Mathematics, vol. 4, no. 2, pp. 42-46, 2018.
  10. J. D. Urrutia, J. L. B. Diaz and F. L. T. Mingo, "Forecasting the Quarterly Production of Rice and Corn in the Philippines: A Time Series Analysis," in Journal of Physics: Conference Series, Volume 820, 5th International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2017 (ScieTech 2017), Bali, Indonesia, 2017.
  11. BPS, "Jumlah Kunjungan Wisatawan Mancanegara per bulan ke Indonesia Menurut Pintu Masuk 2017-2020," Badan Pusat Statistik, [Online]. Available: https://www.bps.go.id/indicator/16/1150/3/jumlah-kunjungan-wisatawan-mancanegara-per-bulan-ke-indonesia-menurut-pintu-masuk-2017---sekarang.html. [Accessed 27 12 2021].
  12. J. J. M. Moreno, A. P. Pol, A. S. Abad and B. C. Blasco, "Using the R-MAPE Index as a Resistant Measure of Forecast Accuracy," Psicothema, vol. 25, no. 4, pp. 500-506, 2013.