Main Article Content
Abstract
According to regulations, life insurance companies must meet several requirements related to the company's financial health, one of which is a technical reserve. Technical or premium reserves are funds that the insurance companies must prepare. These funds will cover financial losses experienced by someone who applies for the claim. Thus, the author will use the Gross Premium Valuation (GPV) method in this research. Premium reserves can be determined using two approaches: retrospective and prospective reserves. In this research, the author will determine the prospective reserves with GPV for single decrement insurance and single life n-year continuous term life. The distribution of deaths used in determining the probability of death is the Indonesian life table IV and the de-Moivre assumption with parameter (ɷ=111). Different assumptions for the death probability distribution will result in different premium reserve values, so we can see a difference in premium reserves resulting from the two death probability distributions. This research uses data from male policyholders aged 40 years who followed continuous term life insurance for 20 years. Benefits will be paid right at the time of death, with a discrete method of premium payments made at the beginning of each year for 10 years.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Annisa, F.U., Riaman, and Subartini, B., “Penerapan Model Harga Opsi Black-Scholes dalam Penetapan Premi Asuransi Jiwa Berjangka Unit Link,” Jurnal Matematika Integratif, 14(2), 91 (2019).
- Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J., “Actuarial Mathematics. The Society of Actuaries,” (1997).[3] Eurico, D., Kezia, S., Noviyanti, L., and Soleh, A.Z., “Cadangan Prospektif Produk Asuransi Jiwa Endowment dengan Metode Gross Premium Valuation,” Jurnal Matematika Integratif, 17(2), 97 (2021).
- Fibrianti, V.L., “Penerapan Hukum De-Moivre Pada Metode New Jersey Dalam Penentuan Nilai Cadangan Asuransi Jiwa Dwiguna,” 10-11. (2016).
- Hikmah, Y., and Khuzaimah, H.H., “Perhitungan Cadangan Premi Asuransi Jiwa Dengan Metode Gross Premium Valuation (GPV),” Jurnal Administrasi Bisnis Terapan, 1(2), 61–69. (2019).
- Justica, A., Kezia, S., Eurico, D., Priyambudi, A.A., Anees, R.A.S., and Soleh, A.Z., “Program Aplikasi Perhitungan Cadangan Asuransi Tahunan dengan Metode Gross Premium Valuation menggunakan Bahasa Pemrograman Python,” Jurnal Matematika Integratif, 53-62. (2022).
- Kamil, I., and Murni, D., “Modifikasi Cadangan Premi Tahunan Retrospektif Pada Asuransi Jiwa Berjangka Kasus Joint Life Dengan Metode Zillmer,” 4(2), 12–17. (2021).
- Oktavian, M.R., Devianto, D., & Yanuar, F., “Kajian Metode Zillmer, Full Preliminary Term, Dan Premium Sufficiency Dalam Menentukan Cadangan Premi Pada Asuransi Jiwa Dwiguna,” Jurnal Matematika UNAND, 3(4), 160. (2014).
- Setiawati, D.P., Agustiani, F., & Marwati, R., “Penentuan Premi Asuransi Jiwa Berjangka, Asuransi Tabungan Berjangka, Asuransi Dwiguna Berjangka Dengan Program Aplikasinya,” Jurnal EurekaMatika, 7(2), 100–114. (2019).
References
Annisa, F.U., Riaman, and Subartini, B., “Penerapan Model Harga Opsi Black-Scholes dalam Penetapan Premi Asuransi Jiwa Berjangka Unit Link,” Jurnal Matematika Integratif, 14(2), 91 (2019).
Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J., “Actuarial Mathematics. The Society of Actuaries,” (1997).[3] Eurico, D., Kezia, S., Noviyanti, L., and Soleh, A.Z., “Cadangan Prospektif Produk Asuransi Jiwa Endowment dengan Metode Gross Premium Valuation,” Jurnal Matematika Integratif, 17(2), 97 (2021).
Fibrianti, V.L., “Penerapan Hukum De-Moivre Pada Metode New Jersey Dalam Penentuan Nilai Cadangan Asuransi Jiwa Dwiguna,” 10-11. (2016).
Hikmah, Y., and Khuzaimah, H.H., “Perhitungan Cadangan Premi Asuransi Jiwa Dengan Metode Gross Premium Valuation (GPV),” Jurnal Administrasi Bisnis Terapan, 1(2), 61–69. (2019).
Justica, A., Kezia, S., Eurico, D., Priyambudi, A.A., Anees, R.A.S., and Soleh, A.Z., “Program Aplikasi Perhitungan Cadangan Asuransi Tahunan dengan Metode Gross Premium Valuation menggunakan Bahasa Pemrograman Python,” Jurnal Matematika Integratif, 53-62. (2022).
Kamil, I., and Murni, D., “Modifikasi Cadangan Premi Tahunan Retrospektif Pada Asuransi Jiwa Berjangka Kasus Joint Life Dengan Metode Zillmer,” 4(2), 12–17. (2021).
Oktavian, M.R., Devianto, D., & Yanuar, F., “Kajian Metode Zillmer, Full Preliminary Term, Dan Premium Sufficiency Dalam Menentukan Cadangan Premi Pada Asuransi Jiwa Dwiguna,” Jurnal Matematika UNAND, 3(4), 160. (2014).
Setiawati, D.P., Agustiani, F., & Marwati, R., “Penentuan Premi Asuransi Jiwa Berjangka, Asuransi Tabungan Berjangka, Asuransi Dwiguna Berjangka Dengan Program Aplikasinya,” Jurnal EurekaMatika, 7(2), 100–114. (2019).