Main Article Content

Abstract

This study aimed to identify and analyze factors contributing to the delay in the study period of students enrolled in the Mathematics Program at the Faculty of Science and Engineering (FST), Nusa Cendana University (UNDANA). The research employed a comprehensive analytical approach, starting with validity and reliability tests, followed by descriptive analysis, and culminating in factor analysis. Initially, 27 variables were considered; however, after conducting validity and reliability assessments, 18 variables were deemed suitable for further analysis. These 18 variables were subjected to factor analysis, revealing that they could be consolidated into four distinct factors, collectively accounting for 68.734% of the total variability observed among the students. The four identified factors influencing study delays are (1) student and supervisor commitment to completing the final project, (2) campus and peer support, (3) intelligence and discipline, and (4) motivation and relationships. Among these, the commitment of students and their supervisors to the timely completion of the final project emerged as the most dominant factor, demonstrating 43.417% of the total variance. The findings highlight the crucial role of both individual dedication and external support systems in ensuring timely academic progress, offering valuable insights for improving student outcomes in the Mathematics Program at UNDANA.

Keywords

factor analysis mathematics program study delay factors

Article Details

How to Cite
Sinu, E. B., & Atti, A. (2024). Factor Influencing Delayed Completion in Mathematics Students at Nusa Cendant University: A Factor Analysis Approach . Enthusiastic : International Journal of Applied Statistics and Data Science, 4(2), 109–118. https://doi.org/10.20885/enthusiastic.vol4.iss2.art3

References

  1. H. Khotimah, “Faktor-Faktor yang Memengaruhi Belajar Matematika,” Jurnal Pendidikan Matematika, Vol. 2, No. 2, pp. 116–123, December 2019, doi: 10.36277/defermat.v2i2.56.
  2. H. Ihsan and A. Zaki, “Analisis Faktor-Faktor yang Menghambat Penyelesaian Studi Mahasiswa FMIPA UNM,” Indonesian Journal of Fundamental Sciences, Vol. 1, No. 1, pp. 25–33, 2015, doi: 10.26858/ijfs.v1i1.2116.
  3. N.D. Larasati and W.S. Jatiningrum, “Analisis Faktor pada Keterlambatan Studi Mahasiswa Teknik Industri Universitas Ahmad Dahlan,” Manajemen Pendidikan, Vol. 16, No. 2, pp. 83–96, Dec. 2021, doi: 10.23917/jmp.v16i2.12134.
  4. K. Backhaus, B. Erichson, S. Gensler, R. Weiber, and T. Weiber, Multivariate Analysis: An Application-Oriented Introduction. Wiesbaden, Germany: Springer Gabler Wiesbaden, 2021.
  5. K. Daely, U. Sinulingga, and A. Manurung, “Statistical Analysis of Factors Influencing Student Academic Performance Index”, Saintia Matematika, Vol. 1, No. 5, pp. 483–494, Sep. 2013.
  6. R. Hardinata, L. Oktaviana, F.F. Husain, S. Putri, and F. Kartiasih, “Analisis Faktor-Faktor yang Memengaruhi Stunting di Indonesia Tahun 2021,” in Seminar Nasional Official Statistics 2023, 2023, pp. 817–826, doi: 10.34123/semnasoffstat.v2023i1.1867.
  7. R. Fadilah and E.S. Negara, “Factor Analysis of User Acceptance of The Electronic Performance Remuneration Application (E-Rk) Using the Utaut and SDT Methods (Case Study: Musi Rawas Regency Government),” Jurnal Ilmiah MATRIK, Vol. 24, No. 1, 2022.
  8. H. Himayati, N.W. Switrayni, D. Komalasari, and N. Fitriyani, “Analisis Rotasi Ortogonal pada Teknik Analisis Faktor Menggunakan Metode Procrustes,” Eigen Mathematics Journal, Vol. 3, No. 1, pp. 45–55, Jun. 2020, doi: 10.29303/emj.v3i1.66.
  9. P.I. Sofiyati and A. Agoestanto, “Analisis Faktor Produk Domestik Regional Bruto yang Mempengaruhi Pertumbuhan Ekonomi Kabupaten Brebes,” in PRISMA, Prosiding Seminar Nasional Matematika, 2021, pp. 680–693.
  10. N. Shrestha, “Factor Analysis as a Tool for Survey Analysis,” American Journal of Applied Mathematics and Statistics, Vol. 9, No. 1, pp. 4–11, Jan. 2021, doi: 10.12691/ajams-9-1-2.
  11. J. Catulay, J. Costales, and N. Bermudez, “Kaiser-Meyer-Olkin Factor Analysis: A Quantitative Approach on Mobile Gaming Addiction using Random Forest Classifier,” in ICISDM ’22: Proceedings of the 6th International Conference on Information System and Data Mining, Association for Computing Machinery, 2022, pp. 18–24, doi: 10.1145/3546157.3546161.
  12. H.-Y. Lee, Y.-L. Chen, and L.-J. Weng, “Brief Research Report: Effects of Sampling Error and Categorization on Estimation of Measure of Sampling Adequacy,” Journal of Experimental Education, Vol. 92, No. 2, pp. 398–410, Apr. 2023, doi: 10.1080/00220973.2023.2196672.
  13. M. Greenacre, P.J.F. Groenen, T. Hastie, A.I. D’Enza, A. Markos, and E. Tuzhilina, “Principal Component Analysis,” Nature Reviews Methods Primers, 2022, Art. no. 100, doi: 10.1038/s43586-022-00184-w.
  14. G. Zhang, M. Hattori, and L.A. Trichtinger, “Rotating Factors to Simplify Their Structural Paths,” Psychometrika, Vol. 88, No. 3, pp. 865–887, Sep. 2023, doi: 10.1007/s11336-022-09877-3.
  15. P.J. Ferrando and U. Lorenzo-Seva, “The Appropriateness of Sum Scores as Estimates of Factor Scores in the Multiple Factor Analysis of Ordered-Categorical Responses,” Educational and Psychological Measurement, Vol. 81, No. 2, pp. 205–228, Apr. 2021, doi: 10.1177/0013164420938108.
  16. D. Budiastuti, and A. Bandur, Validitas dan Reliabilitas Penelitian. Jakarta, Indonesia: Mitra Wacana Media, 2018.