Main Article Content

Abstract

Indonesian International Student Mobility Award (IISMA) is a government-run student exchange program. Recently, rumors regarding its discontinuation have sparked various public opinions. This study aims to analyze these public sentiments and evaluate which machine learning model is most suitable for classifying sentiment labels in the dataset. The models tested included support vector machine (SVM), random forest classifier (RFC), and extreme gradient boosting (XGBoost) classifier. The dataset consisted of 630 tweets scraped from Twitter and was split into an 80:20 ratio, with 80% allocated for training and 20% for testing. The results indicated that both SVM and RFC were the most effective models, achieving the highest accuracy of 85.44%. Sentiment analysis reveals that the majority of public opinion is positive, suggesting that most people agree with the discontinuation of the IISMA program because the program is perceived as nonurgent and not a current national priority. These findings provide insights into public sentiment and highlight the utility of machine learning models in classifying such sentiment data effectively.

Keywords

IISMA Sentiment Analysis SVM RFC XGBoost Classifier

Article Details

How to Cite
Handa, M. I., Sampe, M. Z., & Syafrudi. (2025). Analyzing Sentiments on IISMA Discontinuation Rumors with SVM, Random Forest Classifier, and XGBoost Classifier. Enthusiastic : International Journal of Applied Statistics and Data Science, 5(2), 153–165. https://doi.org/10.20885/enthusiastic.vol5.iss2.art5

References

  1. S.A. Dawya and A. Okvitawanli, “More than studying abroad: The impacts of Indonesian International Student Mobility Awards (IISMA) program to its alumni and society,” in Proc. 2023 Brawijaya Int. Conf., Jan. 2024, pp. 617–626, doi: 10.2991/978-94-6463-525-6_69.
  2. N. Risa, D.D. Prasetya, W.N. Hidayat, P.I. Maula, I.M. Wirawan, and S.Y. Setiawan, “Sentiment analysis of ‘Kampus Merdeka’ on Twitter using support vector machine (SVM) algorithm,” in 2024 IEEE 2nd Int. Conf. Elect. Eng. Comput. Inf. Technol. (ICEECIT), Nov. 2024, pp. 163–168, doi: 10.1109/ICEECIT63698.2024.10859978.
  3. E. Nurmiati, M.Q. Huda, and S. Mitsalina, “Sentiment analysis and topics modeling on mobile banking reviews of Sharia Bank in Indonesia using naive Bayes and latent dirichlet allocation,” in 2024 12th Int. Conf. Cyber IT Serv. Manag. (CITSM), Oct. 2024, pp. 1–6, doi: 10.1109/CITSM64103.2024.10775521.
  4. D.A. Fidian, T.N. Fatyanosa, and A. Ridok, “Analisis sentimen terhadap program Indonesian International Student Mobility Award (IISMA) di platform X/Twitter menggunakan TF-IDF dan SVM,” J. Pengemb. Teknol. Inf. Ilmu Komput., vol. 1, no. 1, pp. 1–7, Jan. 2025.
  5. P.A.F. Sara, “Analisis sentimen program Kampus Merdeka IISMA berbasis komentar Titkok dan Tweets Twitter menggunakan metode support vector machine dan FASTTEXT,” B.S. thesis, Dept. Inform. Eng. Univ. Pendidik. Ganesha, Bali, Indonesia, 2024.
  6. R. Khairunnas, J.A. Pagua, G. Fitriya, and Y. Ruldeviyani, “User sentiment dynamics in social media: A comparative analysis of X and Threads,” IAES Int. J. Artif. Intell. (IJ-AI), vol. 14, no. 1, pp. 447–456, Feb. 2025, doi: 10.11591/ijai.v14.i1.pp447-456.
  7. A. Shebl, D. Abriha, A.S. Fahil, H.A. El-Dokouny, A.A. Elrasheed, and Á. Csámer, “PRISMA hyperspectral data for lithological mapping in the Egyptian Eastern Desert: Evaluating the support vector machine, random forest, and XG boost machine learning algorithms,” Ore Geol. Rev., vol. 161, Oct. 2023, Art. no 105652, doi: 10.1016/j.oregeorev.2023.105652.
  8. B. AlBadani, R. Shi, and J. Dong, “A novel machine learning approach for sentiment analysis on Twitter incorporating the universal language model fine-tuning and SVM,” Appl. Syst. Innov., vol. 5, no. 1, pp. 1–16, Jan. 2022, doi: 10.3390/asi5010013.
  9. R. Obiedat et al., “Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.
  10. S. Sönmez, T. Açi, H. Takci, and H. Kekül, “Sentiment analysis for Udemy Reviews with natural language processing and machine learning methods,” Researcher, vol. 04, no. 02, pp. 184–191, 2024.
  11. N.H. Agjee, O. Mutanga, K. Peerbhay, and R. Ismail, “The impact of simulated spectral noise on random forest and oblique random forest classification performance,” J. Spectroscopy, vol. 2018, no. 1, pp. 1–8, Jan. 2018, doi: 10.1155/2018/8316918.
  12. A.A. Abdirahman, A.O. Hashi, U.M. Dahir, M.A. Elmi, and O.E.R. Rodriguez, “Comparative analysis of machine learning and deep learning models for sentiment analysis in Somali language,” Int. J. Elect. Electron. Eng., vol. 10, no. 7, pp. 41–52, Jul. 2023, doi: 10.14445/23488379/IJEEE-V10I7P104.
  13. S. Liang, “Comparative analysis of SVM, XGBoost and neural network on hate speech classification,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 896–903, Oct. 2021, doi: 10.29207/resti.v5i5.3506.
  14. S. Afrida, “Secondary Data Collection Techniques — Web Scraping and Crawling,” Medium. Accessed: April 1, 2025. [Online]. Available: https://yandaafrida.medium.com/secondary-data-collection-techniques-web-scraping-and-crawling-c4071476e62b
  15. M. Wankhade, A.C.S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif. Intell. Rev., vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
  16. O. Narushynska, V. Teslyuk, A. Doroshenko, and M. Arzubov, “Data sorting influence on short text manual labeling quality for hierarchical classification,” Big Data and Cognitive Computing, vol. 8, no. 4, Apr. 2024, Art. no. 8, doi: 10.3390/bdcc8040041.
  17. P.R.A. Savitri, I.M.A. D. Suarjaya, and W.O. Vihikan, “Sentiment analysis of X (Twitter) comments on the influence of South Korean culture in Indonesia,” J. Inf. Syst. Inform., vol. 6, no. 2, pp. 979–991, Jun. 2024, doi: 10.51519/journalisi.v6i2.749.
  18. Rianto, A.B. Mutiara, E.P. Wibowo, and P.I. Santosa, “Improving the accuracy of text classification using stemming method, a case of non-formal Indonesian conversation,” J. Big Data, vol. 8, Dec. 2021, Art. no 26, doi: 10.1186/s40537-021-00413-1.
  19. K. Smelyakov, D. Karachevtsev, D. Kulemza, Y. Samoilenko, O. Patlan, and A. Chupryna, “Effectiveness of preprocessing algorithms for natural language processing applications,” in 2020 IEEE Int. Conf. Problems of Infocommun. Sci. Technol. (PIC S&T), Oct. 2020, pp. 187–191, doi: 10.1109/PICST51311.2020.9467919.
  20. O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Sci. Rep., vol. 14, Mar. 2024, Art. no 6086 (2024), doi: 10.1038/s41598-024-56706-x.
  21. K. Killamsetty et al., “AUTOMATA: Gradient based data subset selection for compute-efficient hyper-parameter tuning,” in Proc. 36th Int. Conf. Neural Inf. Process. Syst., Mar. 2022, pp. 28721–287 doi: 10.48550/arxiv.2203.08212.
  22. S. Kumari, Ranganayaki. V. C, S. K, K. Selvi, T. A. Mohanaprakash, and C. Tamilselvi, “Optuna-optimized machine learning technique for accurate diabetes prediction and classification,” in 2024 4th Int. Conf. Sustain. Expert Syst. (ICSES), Oct. 2024, pp. 1478–1485, doi: 10.1109/ICSES63445.2024.10763036.
  23. R. Guido, M.C. Groccia, and D. Conforti, “A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers,” Soft Comput., vol. 27, no. 18, pp. 12863–12881, Sep. 2023, doi: 10.1007/s00500-022-06768-8.