Main Article Content

Abstract

This research addressed the limitations of the ordered probit (OP) regression model in handling data that contains an excessive number of zero responses. The zero-inflated ordered probit (ZIOP) model was employed to overcome this issue. This model separates the estimation of structural zeros and ordinal outcomes through two distinct components: a binary probit for zero inflation and an OP for ordered categories. Due to the absence of closed-form solutions, parameter estimation was conducted using the maximum likelihood estimation (MLE) method with the Berndt-Hall-Hall-Hausman (BHHH) iterative algorithm. The analysis was based on 4,067 household-level observations from Indonesia’s National Socio-Economic Survey, incorporating indicators of health, education, and standard of living derived from the multidimensional poverty index (MPI) framework. The result of the Vuong test (4.56) confirmed that the ZIOP model significantly outperformed the conventional OP model for zero-inflated ordinal data. Therefore, the ZIOP model is considered more appropriate for analyzing household poverty classifications with a high prevalence of zero observations.

Keywords

Binary Probit Household Poverty Latent Variable Ordinal Probit ZIOP

Article Details

How to Cite
Yudhani, N. P., Vita Ratnasari, & Santi Puteri Rahayu. (2025). A Zero-Inflated Ordered Probit Approach to Modeling Household Poverty Levels. Enthusiastic : International Journal of Applied Statistics and Data Science, 5(1), 56–66. https://doi.org/10.20885/enthusiastic.vol5.iss1.art6

References

  1. M.N. Harris and X. Zhao, “A zero-inflated ordered probit model, with an application to modelling tobacco consumption,” J. Econom., vol. 141, no. 2, pp. 1073–1099, Dec. 2007, doi: 10.1016/j.jeconom.2007.01.002.
  2. N. Rejeki, V. Ratnasari, and M. Ahsan, “Modelling of poor household in East Kalimantan using zero inflated ordered probit (ZIOP) approach,” Procedia Comput. Sci., vol. 234, 2024, pp. 278–285, doi: 10.1016/j.procs.2024.03.002.
  3. B.E. Bagozzi, D.W. Hill, W.H. Moore, and B. Mukherjee, “Modeling two types of peace: The zero-inflated ordered probit (ZIOP) model in conflict research,” J. Confl. Resolut., vol. 59, no. 4, pp. 728–752, Jun. 2015, doi: 10.1177/0022002713520530.
  4. S. Alkire, F. Kövesdi, E. Scheja, and F. Vollmer, “Moderate multidimensional poverty index: Paving the way out of poverty,” Soc. Indic. Res., vol. 168, pp. 409–445, Aug. 2023, doi: 10.1007/s11205-023-03134-5.
  5. Badan Pusat Statistik, “Profil kemiskinan D.I. Yogyakarta Maret 2024,” 2024. [Online]. Available: https://yogyakarta.bps.go.id
  6. Badan Pusat Statistik, “Perhitungan dan analisis kemiskinan makro Indonesia.” 2021. [Online]. Available: https://www.bps.go.id/id/publication/2021/11/30/
  7. c24f43365d1e41c8619dfe4/penghitungan-dan-analisis-kemiskinan-makro-indonesia-tahun-2021.html
  8. UNDP (United Nations Development Programme), “Global multidimensional poverty index 2023: unstacking global poverty: Data for high impact action,” 2023. [Online]. Available: https://hdr.undp.org/system/files/documents/hdp-document/2023mpireporten.pdf
  9. J. Wu, W. Fan, and W. Wang, “A zero-inflated ordered probit model to analyze hazmat truck drivers’ violation behavior and associated risk factors,” IEEE Access, vol. 8, pp. 110974–110985, 2020, doi: 10.1109/ACCESS.2020.3001165.
  10. P. Downward, F. Lera-Lopez, and S. Rasciute, “The zero-inflated ordered probit approach to modelling sports participation,” Econ. Model., vol. 28, no. 6, pp. 2469–2477, Nov. 2011, doi: 10.1016/j.econmod.2011.06.024.
  11. H. Wang, Z. Liu, X. Wang, D. Huang, L. Cao, and J. Wang, “Analysis of the injury-severity outcomes of maritime accidents using a zero-inflated ordered probit model,” Ocean Eng., vol. 258, Aug. 2022, doi: 10.1016/j.oceaneng.2022.111796.
  12. C. Xu, S. Xu, C. Wang, and J. Li, “Investigating the factors affecting secondary crash frequency caused by one primary crash using zero-inflated ordered probit regression,” Physica A, vol. 524, pp. 121–129, Jun. 2019, doi: 10.1016/j.physa.2019.03.036.
  13. X. Jiang, B. Huang, R.L. Zaretzki, S. Richards, X. Yan, and H. Zhang, “Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models,” Accid. Anal. Prev., vol. 57, pp. 55–66, Aug. 2013, Art. no 23628942, doi: 10.1016/j.aap.2013.03.018.
  14. S.R. Ajija, D.W. Sari, R. Setianto, and M. Primanthi, Cara Cerdas Menguasai Eviews. Jakarta, Indonesia: Salemba Empat, 2011.
  15. I. Ghozali, Aplikasi Analisis Multivariate SPSS 23. Semarang, Indonesia: Badan Penerbit Universitas Diponegoro, 2016.
  16. T.A. Wicaksono, “Determinan Pemekaran Wilayah di Indonesia: Study Kasus Kabupaten/Kota 2001-2004,” Undergraduate thesis, Fak. Ekon. Bisnis, Univ. Indonesia, Jawa Barat, Indonesia, 2008.
  17. W.H. Greene, Econometric Analysis, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2003.
  18. Q.H. Vuong, “Likelihood ratio tests for model selection and non-nested hypotheses,” Econometrica, vol. 57, no. 2, pp. 307–333, 1989, doi: 10.2307/1912557.