Main Article Content
Abstract
This research addressed the limitations of the ordered probit (OP) regression model in handling data that contains an excessive number of zero responses. The zero-inflated ordered probit (ZIOP) model was employed to overcome this issue. This model separates the estimation of structural zeros and ordinal outcomes through two distinct components: a binary probit for zero inflation and an OP for ordered categories. Due to the absence of closed-form solutions, parameter estimation was conducted using the maximum likelihood estimation (MLE) method with the Berndt-Hall-Hall-Hausman (BHHH) iterative algorithm. The analysis was based on 4,067 household-level observations from Indonesia’s National Socio-Economic Survey, incorporating indicators of health, education, and standard of living derived from the multidimensional poverty index (MPI) framework. The result of the Vuong test (4.56) confirmed that the ZIOP model significantly outperformed the conventional OP model for zero-inflated ordinal data. Therefore, the ZIOP model is considered more appropriate for analyzing household poverty classifications with a high prevalence of zero observations.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- M.N. Harris and X. Zhao, “A zero-inflated ordered probit model, with an application to modelling tobacco consumption,” J. Econom., vol. 141, no. 2, pp. 1073–1099, Dec. 2007, doi: 10.1016/j.jeconom.2007.01.002.
- N. Rejeki, V. Ratnasari, and M. Ahsan, “Modelling of poor household in East Kalimantan using zero inflated ordered probit (ZIOP) approach,” Procedia Comput. Sci., vol. 234, 2024, pp. 278–285, doi: 10.1016/j.procs.2024.03.002.
- B.E. Bagozzi, D.W. Hill, W.H. Moore, and B. Mukherjee, “Modeling two types of peace: The zero-inflated ordered probit (ZIOP) model in conflict research,” J. Confl. Resolut., vol. 59, no. 4, pp. 728–752, Jun. 2015, doi: 10.1177/0022002713520530.
- S. Alkire, F. Kövesdi, E. Scheja, and F. Vollmer, “Moderate multidimensional poverty index: Paving the way out of poverty,” Soc. Indic. Res., vol. 168, pp. 409–445, Aug. 2023, doi: 10.1007/s11205-023-03134-5.
- Badan Pusat Statistik, “Profil kemiskinan D.I. Yogyakarta Maret 2024,” 2024. [Online]. Available: https://yogyakarta.bps.go.id
- Badan Pusat Statistik, “Perhitungan dan analisis kemiskinan makro Indonesia.” 2021. [Online]. Available: https://www.bps.go.id/id/publication/2021/11/30/
- c24f43365d1e41c8619dfe4/penghitungan-dan-analisis-kemiskinan-makro-indonesia-tahun-2021.html
- UNDP (United Nations Development Programme), “Global multidimensional poverty index 2023: unstacking global poverty: Data for high impact action,” 2023. [Online]. Available: https://hdr.undp.org/system/files/documents/hdp-document/2023mpireporten.pdf
- J. Wu, W. Fan, and W. Wang, “A zero-inflated ordered probit model to analyze hazmat truck drivers’ violation behavior and associated risk factors,” IEEE Access, vol. 8, pp. 110974–110985, 2020, doi: 10.1109/ACCESS.2020.3001165.
- P. Downward, F. Lera-Lopez, and S. Rasciute, “The zero-inflated ordered probit approach to modelling sports participation,” Econ. Model., vol. 28, no. 6, pp. 2469–2477, Nov. 2011, doi: 10.1016/j.econmod.2011.06.024.
- H. Wang, Z. Liu, X. Wang, D. Huang, L. Cao, and J. Wang, “Analysis of the injury-severity outcomes of maritime accidents using a zero-inflated ordered probit model,” Ocean Eng., vol. 258, Aug. 2022, doi: 10.1016/j.oceaneng.2022.111796.
- C. Xu, S. Xu, C. Wang, and J. Li, “Investigating the factors affecting secondary crash frequency caused by one primary crash using zero-inflated ordered probit regression,” Physica A, vol. 524, pp. 121–129, Jun. 2019, doi: 10.1016/j.physa.2019.03.036.
- X. Jiang, B. Huang, R.L. Zaretzki, S. Richards, X. Yan, and H. Zhang, “Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models,” Accid. Anal. Prev., vol. 57, pp. 55–66, Aug. 2013, Art. no 23628942, doi: 10.1016/j.aap.2013.03.018.
- S.R. Ajija, D.W. Sari, R. Setianto, and M. Primanthi, Cara Cerdas Menguasai Eviews. Jakarta, Indonesia: Salemba Empat, 2011.
- I. Ghozali, Aplikasi Analisis Multivariate SPSS 23. Semarang, Indonesia: Badan Penerbit Universitas Diponegoro, 2016.
- T.A. Wicaksono, “Determinan Pemekaran Wilayah di Indonesia: Study Kasus Kabupaten/Kota 2001-2004,” Undergraduate thesis, Fak. Ekon. Bisnis, Univ. Indonesia, Jawa Barat, Indonesia, 2008.
- W.H. Greene, Econometric Analysis, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2003.
- Q.H. Vuong, “Likelihood ratio tests for model selection and non-nested hypotheses,” Econometrica, vol. 57, no. 2, pp. 307–333, 1989, doi: 10.2307/1912557.
References
M.N. Harris and X. Zhao, “A zero-inflated ordered probit model, with an application to modelling tobacco consumption,” J. Econom., vol. 141, no. 2, pp. 1073–1099, Dec. 2007, doi: 10.1016/j.jeconom.2007.01.002.
N. Rejeki, V. Ratnasari, and M. Ahsan, “Modelling of poor household in East Kalimantan using zero inflated ordered probit (ZIOP) approach,” Procedia Comput. Sci., vol. 234, 2024, pp. 278–285, doi: 10.1016/j.procs.2024.03.002.
B.E. Bagozzi, D.W. Hill, W.H. Moore, and B. Mukherjee, “Modeling two types of peace: The zero-inflated ordered probit (ZIOP) model in conflict research,” J. Confl. Resolut., vol. 59, no. 4, pp. 728–752, Jun. 2015, doi: 10.1177/0022002713520530.
S. Alkire, F. Kövesdi, E. Scheja, and F. Vollmer, “Moderate multidimensional poverty index: Paving the way out of poverty,” Soc. Indic. Res., vol. 168, pp. 409–445, Aug. 2023, doi: 10.1007/s11205-023-03134-5.
Badan Pusat Statistik, “Profil kemiskinan D.I. Yogyakarta Maret 2024,” 2024. [Online]. Available: https://yogyakarta.bps.go.id
Badan Pusat Statistik, “Perhitungan dan analisis kemiskinan makro Indonesia.” 2021. [Online]. Available: https://www.bps.go.id/id/publication/2021/11/30/
c24f43365d1e41c8619dfe4/penghitungan-dan-analisis-kemiskinan-makro-indonesia-tahun-2021.html
UNDP (United Nations Development Programme), “Global multidimensional poverty index 2023: unstacking global poverty: Data for high impact action,” 2023. [Online]. Available: https://hdr.undp.org/system/files/documents/hdp-document/2023mpireporten.pdf
J. Wu, W. Fan, and W. Wang, “A zero-inflated ordered probit model to analyze hazmat truck drivers’ violation behavior and associated risk factors,” IEEE Access, vol. 8, pp. 110974–110985, 2020, doi: 10.1109/ACCESS.2020.3001165.
P. Downward, F. Lera-Lopez, and S. Rasciute, “The zero-inflated ordered probit approach to modelling sports participation,” Econ. Model., vol. 28, no. 6, pp. 2469–2477, Nov. 2011, doi: 10.1016/j.econmod.2011.06.024.
H. Wang, Z. Liu, X. Wang, D. Huang, L. Cao, and J. Wang, “Analysis of the injury-severity outcomes of maritime accidents using a zero-inflated ordered probit model,” Ocean Eng., vol. 258, Aug. 2022, doi: 10.1016/j.oceaneng.2022.111796.
C. Xu, S. Xu, C. Wang, and J. Li, “Investigating the factors affecting secondary crash frequency caused by one primary crash using zero-inflated ordered probit regression,” Physica A, vol. 524, pp. 121–129, Jun. 2019, doi: 10.1016/j.physa.2019.03.036.
X. Jiang, B. Huang, R.L. Zaretzki, S. Richards, X. Yan, and H. Zhang, “Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models,” Accid. Anal. Prev., vol. 57, pp. 55–66, Aug. 2013, Art. no 23628942, doi: 10.1016/j.aap.2013.03.018.
S.R. Ajija, D.W. Sari, R. Setianto, and M. Primanthi, Cara Cerdas Menguasai Eviews. Jakarta, Indonesia: Salemba Empat, 2011.
I. Ghozali, Aplikasi Analisis Multivariate SPSS 23. Semarang, Indonesia: Badan Penerbit Universitas Diponegoro, 2016.
T.A. Wicaksono, “Determinan Pemekaran Wilayah di Indonesia: Study Kasus Kabupaten/Kota 2001-2004,” Undergraduate thesis, Fak. Ekon. Bisnis, Univ. Indonesia, Jawa Barat, Indonesia, 2008.
W.H. Greene, Econometric Analysis, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2003.
Q.H. Vuong, “Likelihood ratio tests for model selection and non-nested hypotheses,” Econometrica, vol. 57, no. 2, pp. 307–333, 1989, doi: 10.2307/1912557.
