Main Article Content
Abstract
Health data are often analyzed in their continuous form through approaches such as linear, logistic, or survival models. In this study, hematological variables were dichotomized based on established clinical cut-offs to enable log-linear analysis of associations among categorical variables, acknowledging the potential loss of information from this transformation. A log-linear model was applied to evaluate independence, dependence, and interaction patterns among leukocyte, hemoglobin, and hematocrit categories in a dengue hemorrhagic fever (DHF) patient dataset. Previous analyses using survival models identified these variables as factors associated with recovery rates; however, these models did not capture their interaction structure. Log-linear analysis was therefore employed to examine these associations more comprehensively. The best-fitting model was identified as , which included two-factor interactions between leukocyte–hematocrit and hemoglobin–hematocrit. This model demonstrated a good fit (Pearson , , ), including a three-factor interaction resulted in a saturated model (= 0) and did not improve model performance. These findings highlight significant interaction patterns among hematological variables in DHF patients, providing a more detailed understanding of their joint associations.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- O.A. Odetunmibi, A.O. Adejumo, and T.A. Anake, “Log-linear modelling of effect of age and gender on the spread of hepatitis B virus infection in Lagos State, Nigeria,” Open Access Maced. J. Med. Sci., vol. 7, no. 13, pp. 2204–2207, 2019, doi: 10.3889/oamjms.2019.573.
- M. Teinsuwan, S. Lertprapai, J. Sirichaisinthop, and A. Lawmepol, “Application of log-linear models to malaria patients in Thailand,” Stat. Med., vol. 19, no. 14, pp. 1931–1945, 2000, doi: 10.1002/1097-0258(20000730)19:14<1931::aid-sim504>3.0.co;2-t.
- B.J. Swihart, B.S. Caffo, C.M. Crainiceanu, and N.M. Punjabi, “Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data,” Stat. Med., vol. 31, no. 9, pp. 855–870, 2012, doi: 10.1002/sim.4457.
- J.W. Millard, F.A. Alvarez-Nunez, and S.H. Yalkowsky, “Solubilization by cosolvents establishing useful constants for the log-linear model,” Int. J. Pharm., vol. 245, no. 1–2, pp. 153–166, 2002, doi: 10.1016/s0378-5173(02)00334-4.
- S.F. Sihotang and Z. Zuhri, “Analisis model log linear tiga dimensi untuk data kualitatif dengan metode forward,” J. Math. Edu. Sci., vol. 6, no. 1, pp. 62–69, 2020, doi: 10.30743/mes.v6i1.3137.
- T.A. Nurman, “Analisis data kategori dengan log linier menggunakan prinsip hirarki (studi kasus jumlah kecelakaan lalu lintas di Kota Makassar tahun 2011),” Teknosains Media Inf. Sains Teknol., vol. 7, no. 1, pp. 99–110, 2013, doi: 10.24252/TEKNOSAINS.V7I1.77.
- I. Kamil, M. Susilawati, and I.P.E.N. Kencana, “Model log-linear faktor-faktor yang mempengaruhi hipertensi (studi kasus: RSUD Abdoe Rahem Situbondo),” E-J. Mat., vol. 1, no. 1, pp. 84–88, 2012, doi: 10.24843/MTK.2012.v01.i01.p015.
- J.K. Vermunt, “LEM: Log-Linear Modelling, User’s manual,” in Encyclopedia of Behavioral Statistics, B. Everit and D.C. Howell, Eds. Chichester, United Kingdom: John Wiley & Sons Inc, 2005, pp. 1082-1093.
- M. Bucca and D.R. Urbina, “Lasso regularization for selection of log-linear models: An application to educational assortative mating,” Sociol. Methods Res., vol. 50, no. 4, pp. 1763-1800, 2019, doi: 10.1177/0049124119826154.
- A. Hakami et al., “Hematological parameters in recent and past dengue infections in Jazan Province, Saudi Arabia,” Saudi Med. J., vol. 46, no. 5, pp. 515–521, May 2025, doi: 10.15537/smj.2025.46.5.20240879.
- S. Anwar, R. Islam, Y. Araf, J.T. Mourosi, and M.J. Hosen, “Clinical profiles and hematologic patterns in Bangladesh’s 2019 dengue outbreak,” The Microbe, vol. 7, Jun. 2025, Art. no 10032, doi: 10.1016/j.microb.2025.100325.
- Mst.S. Akhtar, Md.M. Rahman, and Mst.S. Akhter, “Observation of hematocrit level among dengue fever patients in a Tertiary Care Hospital,” Sch. Int. J. Anat. Physiol., vol. 8, no. 3, pp. 67–72, May/Jun. 2025, doi: 10.36348/sijap.2025.v08i03.001.
- S. Bhatt et al., “The global distribution and burden of dengue,” Nature, no. 496, pp. 504–507, 2013, doi: 10.1038/nature12060.
- O.J. Brady et al., “Refining the global spatial limits of dengue virus transmission by evidence-based consensus,” PLoS Negl. Trop. Dis., vol. 6, no. 8, 2012, Art. no. e1760, doi: 10.1371/journal.pntd.0001760.
- A.S. Mufidah and Purhadi, “Analisis survival pada pasien demam berdarah dengue (DBD) di RSU Haji Surabaya menggunakan model regresi Weibull,” J. Sains Seni ITS, vol. 5, no. 2, pp. D301–D306, 2016, doi: 10.12962/j23373520.v5i2.16633.
- WHO, “Dengue and Severe Dengue,” 2025. [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue
- M. Irfan, M. Usman, Warsono, D. Kurniasari, and Widiarti, “Survival analysis using cox proportional hazard regression approach in dengue hemorrhagic fever (DHF) case in Abdul Moeloek Hospital Bandar Lampung 2019,” in Proc. 3rd Int. Conf. Appl. Sci. Math. Inform., in Journal of Physics: Conference Series, vol. 1751, 2020, doi: 10.1088/1742-6596/1751/1/012011.
- A. Agresti, An Introduction to Categorical Data Analysis. New York, USA: John Wiley & Sons, 2007.
- Maryana, “Model log linier yang terbaik untuk analisis data kualitatif pada tabel kontingensi tiga arah,” Malikussaleh Indus. Eng. J., vol. 2, no. 2, pp. 32–37, 2013, doi: 10.53912/iejm.v2i2.77.
- S.B. McKenzie, J.L. Williams, and K. Landis-Piwowar. Clinical Laboratory Hematology. Boston, MA, USA: Pearson, 2020.
- M. Riaz et al., “Evaluation of clinical and laboratory characteristics of dengue viral infection and risk factors of dengue hemorrhagic fever: A multi-center retrospective analysis,” BMC Infect. Dis., vol. 24, no. 1, May 2024, Art. no. 15, doi: 10.1186/s12879-024-09384-z.
- E. Mulyani, S. Nugroho, and F. Faisal, “Model log linier beberapa kasus kriminologi yang terjadi di wilayah Polres Bengkulu pada tahun 2004/2005,” J. Alumni Jur. Mat. Staf Pengajar Jur. Mat. FMIPA Univ. Bengkulu, 2006.
References
O.A. Odetunmibi, A.O. Adejumo, and T.A. Anake, “Log-linear modelling of effect of age and gender on the spread of hepatitis B virus infection in Lagos State, Nigeria,” Open Access Maced. J. Med. Sci., vol. 7, no. 13, pp. 2204–2207, 2019, doi: 10.3889/oamjms.2019.573.
M. Teinsuwan, S. Lertprapai, J. Sirichaisinthop, and A. Lawmepol, “Application of log-linear models to malaria patients in Thailand,” Stat. Med., vol. 19, no. 14, pp. 1931–1945, 2000, doi: 10.1002/1097-0258(20000730)19:14<1931::aid-sim504>3.0.co;2-t.
B.J. Swihart, B.S. Caffo, C.M. Crainiceanu, and N.M. Punjabi, “Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data,” Stat. Med., vol. 31, no. 9, pp. 855–870, 2012, doi: 10.1002/sim.4457.
J.W. Millard, F.A. Alvarez-Nunez, and S.H. Yalkowsky, “Solubilization by cosolvents establishing useful constants for the log-linear model,” Int. J. Pharm., vol. 245, no. 1–2, pp. 153–166, 2002, doi: 10.1016/s0378-5173(02)00334-4.
S.F. Sihotang and Z. Zuhri, “Analisis model log linear tiga dimensi untuk data kualitatif dengan metode forward,” J. Math. Edu. Sci., vol. 6, no. 1, pp. 62–69, 2020, doi: 10.30743/mes.v6i1.3137.
T.A. Nurman, “Analisis data kategori dengan log linier menggunakan prinsip hirarki (studi kasus jumlah kecelakaan lalu lintas di Kota Makassar tahun 2011),” Teknosains Media Inf. Sains Teknol., vol. 7, no. 1, pp. 99–110, 2013, doi: 10.24252/TEKNOSAINS.V7I1.77.
I. Kamil, M. Susilawati, and I.P.E.N. Kencana, “Model log-linear faktor-faktor yang mempengaruhi hipertensi (studi kasus: RSUD Abdoe Rahem Situbondo),” E-J. Mat., vol. 1, no. 1, pp. 84–88, 2012, doi: 10.24843/MTK.2012.v01.i01.p015.
J.K. Vermunt, “LEM: Log-Linear Modelling, User’s manual,” in Encyclopedia of Behavioral Statistics, B. Everit and D.C. Howell, Eds. Chichester, United Kingdom: John Wiley & Sons Inc, 2005, pp. 1082-1093.
M. Bucca and D.R. Urbina, “Lasso regularization for selection of log-linear models: An application to educational assortative mating,” Sociol. Methods Res., vol. 50, no. 4, pp. 1763-1800, 2019, doi: 10.1177/0049124119826154.
A. Hakami et al., “Hematological parameters in recent and past dengue infections in Jazan Province, Saudi Arabia,” Saudi Med. J., vol. 46, no. 5, pp. 515–521, May 2025, doi: 10.15537/smj.2025.46.5.20240879.
S. Anwar, R. Islam, Y. Araf, J.T. Mourosi, and M.J. Hosen, “Clinical profiles and hematologic patterns in Bangladesh’s 2019 dengue outbreak,” The Microbe, vol. 7, Jun. 2025, Art. no 10032, doi: 10.1016/j.microb.2025.100325.
Mst.S. Akhtar, Md.M. Rahman, and Mst.S. Akhter, “Observation of hematocrit level among dengue fever patients in a Tertiary Care Hospital,” Sch. Int. J. Anat. Physiol., vol. 8, no. 3, pp. 67–72, May/Jun. 2025, doi: 10.36348/sijap.2025.v08i03.001.
S. Bhatt et al., “The global distribution and burden of dengue,” Nature, no. 496, pp. 504–507, 2013, doi: 10.1038/nature12060.
O.J. Brady et al., “Refining the global spatial limits of dengue virus transmission by evidence-based consensus,” PLoS Negl. Trop. Dis., vol. 6, no. 8, 2012, Art. no. e1760, doi: 10.1371/journal.pntd.0001760.
A.S. Mufidah and Purhadi, “Analisis survival pada pasien demam berdarah dengue (DBD) di RSU Haji Surabaya menggunakan model regresi Weibull,” J. Sains Seni ITS, vol. 5, no. 2, pp. D301–D306, 2016, doi: 10.12962/j23373520.v5i2.16633.
WHO, “Dengue and Severe Dengue,” 2025. [Online]. Available: https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue
M. Irfan, M. Usman, Warsono, D. Kurniasari, and Widiarti, “Survival analysis using cox proportional hazard regression approach in dengue hemorrhagic fever (DHF) case in Abdul Moeloek Hospital Bandar Lampung 2019,” in Proc. 3rd Int. Conf. Appl. Sci. Math. Inform., in Journal of Physics: Conference Series, vol. 1751, 2020, doi: 10.1088/1742-6596/1751/1/012011.
A. Agresti, An Introduction to Categorical Data Analysis. New York, USA: John Wiley & Sons, 2007.
Maryana, “Model log linier yang terbaik untuk analisis data kualitatif pada tabel kontingensi tiga arah,” Malikussaleh Indus. Eng. J., vol. 2, no. 2, pp. 32–37, 2013, doi: 10.53912/iejm.v2i2.77.
S.B. McKenzie, J.L. Williams, and K. Landis-Piwowar. Clinical Laboratory Hematology. Boston, MA, USA: Pearson, 2020.
M. Riaz et al., “Evaluation of clinical and laboratory characteristics of dengue viral infection and risk factors of dengue hemorrhagic fever: A multi-center retrospective analysis,” BMC Infect. Dis., vol. 24, no. 1, May 2024, Art. no. 15, doi: 10.1186/s12879-024-09384-z.
E. Mulyani, S. Nugroho, and F. Faisal, “Model log linier beberapa kasus kriminologi yang terjadi di wilayah Polres Bengkulu pada tahun 2004/2005,” J. Alumni Jur. Mat. Staf Pengajar Jur. Mat. FMIPA Univ. Bengkulu, 2006.
