Main Article Content

Abstract

The rapid growth of e-commerce in Indonesia presents significant opportunities for micro, small, and medium enterprises (MSMEs), yet the diversity of marketplace platforms complicates the selection of an optimal sales channel. This study addressed this challenge by developing a data-driven recommendation system based on sentiment analysis of user reviews. Utilizing a dataset of 80,000 reviews scraped from four major platforms on the Google Play Store (Shopee, Tokopedia, Lazada, and Blibli), two classification approaches were implemented and compared: support vector machine (SVM) and long short-term memory (LSTM). Both models demonstrated a competitive performance, enabling effective sentiment categorization. Furthermore, multinomial logistic regression was employed to analyze the influence of key variables rating, number of likes, and marketplace brand on sentiment outcomes. The analysis revealed that Shopee yielded the highest probability of receiving positive reviews (97.82%) and showed no significant association with negative sentiment. Consequently, this study recommends Shopee as the primary platform for MSMEs to enhance their digital presence and sales performance. The primary contribution lies in integrating machine learning-based sentiment analysis with statistical modelling to generate actionable, evidence-based marketplace recommendations for MSMEs.

Keywords

Sentiment Analysis Recommendation System E-Commerce Sentiment Mining Machine Learning Customer Reviews

Article Details

How to Cite
Adiyana, I., Kurniawan, A., Rahmatika, A. H., Setiono, N. H., & Gumelar, S. F. (2025). Recommending E-Commerce Platforms for MSMEs: A Sentiment Analysis Approach. Enthusiastic : International Journal of Applied Statistics and Data Science, 5(2), 190–200. https://doi.org/10.20885/enthusiastic.vol5.iss2.art8

References

  1. Komdigi, “UMKM Indonesia Makin Kuat: Program Level Up 2024 Siap Dorong Digitalisasi Bisnis.” Accessed: December 8, 2025. [Online]. Available: https://indonesia.go.id/kategori/editorial/8587/umkm-indonesia-makin-kuat-program-level-up-2024-siap-dorong-digitalisasi-bisnis
  2. APJII, “APJII Jumlah Pengguna Internet Indonesia Tembus 221 Juta Orang.” Accessed: August 7, 2025. [Online]. Available: https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang
  3. I. Silfia, “BI catat transaksi e-commerce tembus Rp44,4 triliun per Juli 2025,” Accessed: August 4, 2025. [Online]. Available: https://www.antaranews.com/berita/5052357/bi-catat-transaksi-e-commerce-tembus-rp444-triliun-per-juli-2025
  4. T.V. Adya, “Impact of e-commerce and internet users on Indonesia’s economic growth,” in 4th Int. Conf. Bus. Soc. Sci., Nov. 2024, pp. 317–327, doi: 10.24034/icobuss.v4i1.509.
  5. N. Rahmanisa, N.V.N. Haliza, E.P. Maharani, G.N. Inayah, and N. Agustanta, “Hubungan layanan e-commerce terhadap usaha mikro kecil dan menengah,” J. Public Policy Adm. Res., vol. 1, no. 2, pp. 1–7, doi: 10.21831/joppar.v8i2.20698.
  6. A. Nurian, “Analisis sentimen ulasan pengguna aplikasi Google Play menggunakan naïve Bayes,” J. Inform. Tek. Elektr. Terap., vol. 11, no. 3s1, pp. 829–835, Sep. 2023, doi: 10.23960/jitet.v11i3s1.3348.
  7. E.S. Park, R. Dave, and M. Bhavsar, “Comparative research in sentiment analysis using machine learning technique,” J. Data Anal. Inf. Process., vol. 13, no. 3, pp. 269–280, Aug. 2025, doi: 10.4236/jdaip.2025.133016.
  8. A.R. Gunawan and R.F.A. Aziza, “Sentiment analysis using LSTM algorithm regarding Grab Application services in Indonesia,” J. Appl. Inform. Comput., vol. 9, no. 2, pp. 322–332, Apr. 2025, doi: 10.30871/jaic.v9i2.8696.
  9. H. Huang, “The study of factors influencing e-commerce consumers’ purchasing decisions,” Adv. Econ. Manag. Polit. Sci., vol. 161, no. 1, pp. 34–44, Jan. 2025, doi: 10.54254/2754-1169/2025.19880.
  10. A. Mukarromah, “Pengaruh Online customer review, dan online customer rating terhadap keputusan pembelian pada marketplace Shopee,” J. Creative Stud. Res., vol. 1, no. 6, pp. 199–207, Nov. 2023, doi: 10.55606/jcsrpolitama.v1i6.2956.
  11. Sayem, A. Islam, M. R. Uddin, and J. S. Promy, “Determinants of e-commerce customer satisfaction: mediating role of IT innovation acceptance,” Int. J. Qual. Reliab. Manag., vol. 42, no. 1, pp. 86–106, Jan. 2025, doi: 10.1108/IJQRM-10-2023-0332.
  12. M. Manurung and J.P. Juliana putri, “Peran marketplace dalam meningkatkan akses pemasaran UMKM di Indonesia,” AB-JOIEC Al-Bahjah J. Islam. Econ., vol. 2, no. 02, pp. 74–81, Jan. 2025, doi: 10.61553/abjoiec.v2i02.249.
  13. Hoiriyah, H. Mardiana, M. Walid, and A.K. Darmawan, “Lexicon-based and naïve Bayes sentiment analysis for recommending the best marketplace selection as a marketing strategy for MSMEs,” J. Pilar Nusa Mandiri, vol. 19, no. 2, pp. 65–76, Sep. 2023, doi: 10.33480/pilar.v19i1.4176.
  14. D.A. Prabowo, C. Tariazela, and A. Birgithri, “An examination of the impact of using marketplaces to promote the growth of micro, small, and medium enterprises (MSMEs) in Indonesia,” Startupreneur Bus. Digit. (SABDA J.), vol. 3, no. 1, pp. 26–33, 2024, doi: 10.33050/sabda.v3i1.483.
  15. A. Porya, G.N. Vajpai, and N. Chowdhary, “Online customer reviews and ratings: Influence, interpretation, and implications for marketing,” in Reference Module in Social Sciences. Amsterdam, Netherland: Elsevier, 2025.
  16. Zulkarnain, “Klasifikasi sentimen layanan pada aplikasi by.U menggunakan algoritma support vector machine,” B.S. thesis, Faculty of Science and Technology, Univ. Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia, 2025.
  17. M. Schonlau, “Support vector machines,” in Applied Statistical Learning. Cham, Switzerland: Springer Cham, 2023.
  18. M. Beck et al., “xLSTM: Extended long short-term memory,” 2024, arXiv:2405.04517v2.
  19. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
  20. M. Sobari, D.I. Putri, D.R. Prama, and Y. Suparman, “Multinomial logistic regression to determine factors influencing the selection of health care facilities in Indonesia,” J. Fundam. Math. Appl., vol. 7, no. 2, pp. 187–198, Dec. 2024, doi: 10.14710/jfma.v7i2.16499.