Main Article Content
Abstract
This study analyzes the spatio-temporal modeling of crime rates in 35 regencies and cities in Central Java using the geographically and temporally weighted regression (GTWR) method. The objective is to investigate how socio-economic factors, including the open unemployment rate, percentage of the poor population, population density, average years of schooling, job vacancies, labor force participation rate, and labor wage, influence crime rates across different regions and periods. The goodness-of-fit test results indicateed that the GTWR model had an R-squared value of 93.51%, higher than the 88.64% of the geographically weighted regression (GWR) model, demonstrating GTWR’s ability to explain crime data variations that were heterogeneous both spatially and temporally. Partial significance tests and mapping results showed that the influence of variables differed across years and regions, with population density and labor-related factors consistently being the main predictors. These findings highlight the importance of designing crime prevention policies that are locally tailored and based on spatio-temporal evidence.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- S. Franjić, “A Criminological view of crime and criminal act,” J. Forensic Sci. Crim. Investig., vol. 16, no. 4, pp. 1–6, Jan. 2023, doi: 10.19080/JFSCI.2023.16.555942.
- D. Trisnawati, Khoirunurrofik, and D.S. Ismail, “Inter-provincial spatial linkages of crime pattern in Indonesia: Looking at education and economic inequality effects on crime,” Indones. J. Geogr., vol. 51, no. 2, pp. 106–113, Aug. 2019, doi: 10.22146/ijg.34026.
- G.G. Akbar, E. Rustiana, and P.P. Utama, “Analisis faktor-faktor yang mempengaruhi tingkat kriminalitas di Kabupaten Bandung (studi di lapas narkotika kelas IIa Bandung),” J. Pembang. Kebijak. Publik, vol. 11, no. 1, pp. 9–16, Jun. 2020, doi: 10.36624/jpkp.v11i1.69.
- D.T. Anozi and B. Novianda, “Socio-economic and property crime rate in Indonesia,” Econ. Develop. Anal. J., vol. 12, no. 3, pp. 305–318, Aug. 2023, doi: 10.15294/edaj.v12i3.68829.
- M. Miardi, A.J.S. Runturambi, and A.I. Badri, “An analysis of psychosocial vulnerability among recidivists of narcotics trafficking: Identifying the triggering factors of reoffending,” Humanitas, vol. 8, no. 3, pp. 349–370, Jan. 2025, doi: 10.28932/humanitas.v8i3.9977.
- BPS-Statistics Indonesia, “Statistik Indonesia 2025 Statistical Yearbook of Indonesia 2025,” 2025. [Online]. Available: https://www.bps.go.id/id/publication/2025/02/28/
- cfe1a589ad3693396d3db9f/statistik-indonesia-2025.html
- S. Sukarna, A. Zaki, and M. Ilham, “Pemodelan jalur pada faktor yang mempengaruhi kriminalitas di Sulawesi Selatan tahun 2021,” J. MSA ( Mat. Stat. Apl.), vol. 10, no. 1, pp. 1–8, Jun. 2022, doi: 10.24252/msa.v10i1.28243.
- M.A. Juniar, A. Fania, D. Ulya, R. Ramadhan, and N. Chamidah, “Modelling crime rates in indonesia using truncated spline estimator,” BAREKENG J. Ilm. Mat. Terap., vol. 18, no. 2, pp. 1201–1216, Jun. 2024, doi: 10.30598/barekengvol18iss2pp1201-1216.
- A.S. Wicaksono and Suharto, “Analisis pengaruh faktor ekonomi terhadap kriminalitas di Kabupaten/Kota Daerah Istimewa Yogyakarta,” J. Kebijak. Ekon. Keuang., vol. 2, no. 1, pp. 50–57, Jun. 2023, doi: 10.20885/JKEK.vol2.iss1.art6.
- F. Bergas, S. Sucipto, and A. Abdullah, “Prediction of the level of crime cases using multiple linear regression in the city of Pontianak,” TEKNOSAINS J. Sains, Teknol. Inform., vol. 11, no. 2, pp. 245–256, Jul. 2024, doi: 10.37373/tekno.v11i2.1025.
- B. Huang, B. Wu, and M. Barry, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices,” Int. J. Geogr. Inf. Sci., vol. 24, no. 3, pp. 383–401, Mar. 2010, doi: 10.1080/13658810802672469.
- A.S. Fotheringham, R. Crespo, and J. Yao, “Geographical and temporal weighted regression (GTWR),” Geogr. Anal., vol. 47, no. 4, pp. 431–452, Oct. 2015, doi: 10.1111/gean.12071.
- S. Septriani, “The impact of economic conditions on criminality in Indonesia,” Eur. J. Develop. Stud., vol. 4, no. 3, pp. 68–74, Jun. 2024, doi: 10.24018/ejdevelop.2024.4.3.345.
- L. Sugiharti, R. Purwono, M.A. Esquivias, and H. Rohmawati, “The nexus between crime rates, poverty, and income inequality: A case study of Indonesia,” Economies, vol. 11, no. 2, Feb. 2023, Art. no 62, doi: 10.3390/economies11020062.
- W.G. Harahap, R.L. Sari, and I. Lubis, “Analysis of the effect of population density, unemployment, minimum wage, and human development index (IPM) on criminality in North Sumatra,” Int. J. Soc. Sci. Educ. Commun. Econ., vol. 2, no. 2, pp. 179–192, Jun. 2023, doi: 10.54443/sj.v2i2.127.
- F. Fitriyani et al., “Exploring crime rate through the lens of poverty and education in Indonesia: Evidence from panel data approach,” Theor. Practical Res. Econ. Fields, vol. 16, no. 2, pp. 448–459, Jun. 2025, doi: 10.14505/tpref.v16.2(34).14.
- D.G.C. Britto, P. Pinotti, and B. Sampaio, “The effect of job loss and unemployment insurance on crime in Brazil,” Econometrica, vol. 90, no. 4, pp. 1393–1423, Jul. 2022, doi: 10.3982/ECTA18984.
- A.F. Sianturi, A. Tampubolon, N. Hidayat, M.D. Nasution, and R. Sianturi, “Pengaruh partisipasi angkatan kerja (TPAK) dan jumlah penduduk terhadap kemiskinan di Kota Medan (2014-2023),” JALAKOTEK J. Account. Law Commun. Technol., vol. 1, no. 2, pp. 739–750, Jul. 2024, doi: 10.57235/jalakotek.v1i2.2606.
- Y.A. Rahman and A.D. Prasetyo, “Economics and crime rates in Indonesia,” JEJAK, vol. 11, no. 2, pp. 401–412, Sep. 2018, doi: 10.15294/jejak.v11i2.16060.
- C. Brunsdon, A.S. Fotheringham, and M.E. Charlton, “Geographically weighted regression: A method for exploring spatial nonstationarity,” Geogr. Anal., vol. 28, no. 4, pp. 281–298, Oct. 1996, doi: 10.1111/j.1538-4632.1996.tb00936.x.
- J.P. LeSage, “Regression analysis of spatial data,” J. Reg. Anal. Policy, vol. 27, no. 2, pp. 83–94, 1997.
References
S. Franjić, “A Criminological view of crime and criminal act,” J. Forensic Sci. Crim. Investig., vol. 16, no. 4, pp. 1–6, Jan. 2023, doi: 10.19080/JFSCI.2023.16.555942.
D. Trisnawati, Khoirunurrofik, and D.S. Ismail, “Inter-provincial spatial linkages of crime pattern in Indonesia: Looking at education and economic inequality effects on crime,” Indones. J. Geogr., vol. 51, no. 2, pp. 106–113, Aug. 2019, doi: 10.22146/ijg.34026.
G.G. Akbar, E. Rustiana, and P.P. Utama, “Analisis faktor-faktor yang mempengaruhi tingkat kriminalitas di Kabupaten Bandung (studi di lapas narkotika kelas IIa Bandung),” J. Pembang. Kebijak. Publik, vol. 11, no. 1, pp. 9–16, Jun. 2020, doi: 10.36624/jpkp.v11i1.69.
D.T. Anozi and B. Novianda, “Socio-economic and property crime rate in Indonesia,” Econ. Develop. Anal. J., vol. 12, no. 3, pp. 305–318, Aug. 2023, doi: 10.15294/edaj.v12i3.68829.
M. Miardi, A.J.S. Runturambi, and A.I. Badri, “An analysis of psychosocial vulnerability among recidivists of narcotics trafficking: Identifying the triggering factors of reoffending,” Humanitas, vol. 8, no. 3, pp. 349–370, Jan. 2025, doi: 10.28932/humanitas.v8i3.9977.
BPS-Statistics Indonesia, “Statistik Indonesia 2025 Statistical Yearbook of Indonesia 2025,” 2025. [Online]. Available: https://www.bps.go.id/id/publication/2025/02/28/
cfe1a589ad3693396d3db9f/statistik-indonesia-2025.html
S. Sukarna, A. Zaki, and M. Ilham, “Pemodelan jalur pada faktor yang mempengaruhi kriminalitas di Sulawesi Selatan tahun 2021,” J. MSA ( Mat. Stat. Apl.), vol. 10, no. 1, pp. 1–8, Jun. 2022, doi: 10.24252/msa.v10i1.28243.
M.A. Juniar, A. Fania, D. Ulya, R. Ramadhan, and N. Chamidah, “Modelling crime rates in indonesia using truncated spline estimator,” BAREKENG J. Ilm. Mat. Terap., vol. 18, no. 2, pp. 1201–1216, Jun. 2024, doi: 10.30598/barekengvol18iss2pp1201-1216.
A.S. Wicaksono and Suharto, “Analisis pengaruh faktor ekonomi terhadap kriminalitas di Kabupaten/Kota Daerah Istimewa Yogyakarta,” J. Kebijak. Ekon. Keuang., vol. 2, no. 1, pp. 50–57, Jun. 2023, doi: 10.20885/JKEK.vol2.iss1.art6.
F. Bergas, S. Sucipto, and A. Abdullah, “Prediction of the level of crime cases using multiple linear regression in the city of Pontianak,” TEKNOSAINS J. Sains, Teknol. Inform., vol. 11, no. 2, pp. 245–256, Jul. 2024, doi: 10.37373/tekno.v11i2.1025.
B. Huang, B. Wu, and M. Barry, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices,” Int. J. Geogr. Inf. Sci., vol. 24, no. 3, pp. 383–401, Mar. 2010, doi: 10.1080/13658810802672469.
A.S. Fotheringham, R. Crespo, and J. Yao, “Geographical and temporal weighted regression (GTWR),” Geogr. Anal., vol. 47, no. 4, pp. 431–452, Oct. 2015, doi: 10.1111/gean.12071.
S. Septriani, “The impact of economic conditions on criminality in Indonesia,” Eur. J. Develop. Stud., vol. 4, no. 3, pp. 68–74, Jun. 2024, doi: 10.24018/ejdevelop.2024.4.3.345.
L. Sugiharti, R. Purwono, M.A. Esquivias, and H. Rohmawati, “The nexus between crime rates, poverty, and income inequality: A case study of Indonesia,” Economies, vol. 11, no. 2, Feb. 2023, Art. no 62, doi: 10.3390/economies11020062.
W.G. Harahap, R.L. Sari, and I. Lubis, “Analysis of the effect of population density, unemployment, minimum wage, and human development index (IPM) on criminality in North Sumatra,” Int. J. Soc. Sci. Educ. Commun. Econ., vol. 2, no. 2, pp. 179–192, Jun. 2023, doi: 10.54443/sj.v2i2.127.
F. Fitriyani et al., “Exploring crime rate through the lens of poverty and education in Indonesia: Evidence from panel data approach,” Theor. Practical Res. Econ. Fields, vol. 16, no. 2, pp. 448–459, Jun. 2025, doi: 10.14505/tpref.v16.2(34).14.
D.G.C. Britto, P. Pinotti, and B. Sampaio, “The effect of job loss and unemployment insurance on crime in Brazil,” Econometrica, vol. 90, no. 4, pp. 1393–1423, Jul. 2022, doi: 10.3982/ECTA18984.
A.F. Sianturi, A. Tampubolon, N. Hidayat, M.D. Nasution, and R. Sianturi, “Pengaruh partisipasi angkatan kerja (TPAK) dan jumlah penduduk terhadap kemiskinan di Kota Medan (2014-2023),” JALAKOTEK J. Account. Law Commun. Technol., vol. 1, no. 2, pp. 739–750, Jul. 2024, doi: 10.57235/jalakotek.v1i2.2606.
Y.A. Rahman and A.D. Prasetyo, “Economics and crime rates in Indonesia,” JEJAK, vol. 11, no. 2, pp. 401–412, Sep. 2018, doi: 10.15294/jejak.v11i2.16060.
C. Brunsdon, A.S. Fotheringham, and M.E. Charlton, “Geographically weighted regression: A method for exploring spatial nonstationarity,” Geogr. Anal., vol. 28, no. 4, pp. 281–298, Oct. 1996, doi: 10.1111/j.1538-4632.1996.tb00936.x.
J.P. LeSage, “Regression analysis of spatial data,” J. Reg. Anal. Policy, vol. 27, no. 2, pp. 83–94, 1997.
