Main Article Content

Abstract

This study analyzes the spatio-temporal modeling of crime rates in 35 regencies and cities in Central Java using the geographically and temporally weighted regression (GTWR) method. The objective is to investigate how socio-economic factors, including the open unemployment rate, percentage of the poor population, population density, average years of schooling, job vacancies, labor force participation rate, and labor wage, influence crime rates across different regions and periods. The goodness-of-fit test results indicateed that the GTWR model had an R-squared value of 93.51%, higher than the 88.64% of the geographically weighted regression (GWR) model, demonstrating GTWR’s ability to explain crime data variations that were heterogeneous both spatially and temporally. Partial significance tests and mapping results showed that the influence of variables differed across years and regions, with population density and labor-related factors consistently being the main predictors. These findings highlight the importance of designing crime prevention policies that are locally tailored and based on spatio-temporal evidence.  

Keywords

Crime Rates Socio-Economic Factors Spatio-Temporal Heterogeneity GWR GTWR

Article Details

How to Cite
Putra, R. P., & Zai, F. N. (2025). Spatio-Temporal Modeling of Crime Rates Using Geographically and Temporally Weighted Regression . Enthusiastic : International Journal of Applied Statistics and Data Science, 5(2), 139–152. https://doi.org/10.20885/enthusiastic.vol5.iss2.art4

References

  1. S. Franjić, “A Criminological view of crime and criminal act,” J. Forensic Sci. Crim. Investig., vol. 16, no. 4, pp. 1–6, Jan. 2023, doi: 10.19080/JFSCI.2023.16.555942.
  2. D. Trisnawati, Khoirunurrofik, and D.S. Ismail, “Inter-provincial spatial linkages of crime pattern in Indonesia: Looking at education and economic inequality effects on crime,” Indones. J. Geogr., vol. 51, no. 2, pp. 106–113, Aug. 2019, doi: 10.22146/ijg.34026.
  3. G.G. Akbar, E. Rustiana, and P.P. Utama, “Analisis faktor-faktor yang mempengaruhi tingkat kriminalitas di Kabupaten Bandung (studi di lapas narkotika kelas IIa Bandung),” J. Pembang. Kebijak. Publik, vol. 11, no. 1, pp. 9–16, Jun. 2020, doi: 10.36624/jpkp.v11i1.69.
  4. D.T. Anozi and B. Novianda, “Socio-economic and property crime rate in Indonesia,” Econ. Develop. Anal. J., vol. 12, no. 3, pp. 305–318, Aug. 2023, doi: 10.15294/edaj.v12i3.68829.
  5. M. Miardi, A.J.S. Runturambi, and A.I. Badri, “An analysis of psychosocial vulnerability among recidivists of narcotics trafficking: Identifying the triggering factors of reoffending,” Humanitas, vol. 8, no. 3, pp. 349–370, Jan. 2025, doi: 10.28932/humanitas.v8i3.9977.
  6. BPS-Statistics Indonesia, “Statistik Indonesia 2025 Statistical Yearbook of Indonesia 2025,” 2025. [Online]. Available: https://www.bps.go.id/id/publication/2025/02/28/
  7. cfe1a589ad3693396d3db9f/statistik-indonesia-2025.html
  8. S. Sukarna, A. Zaki, and M. Ilham, “Pemodelan jalur pada faktor yang mempengaruhi kriminalitas di Sulawesi Selatan tahun 2021,” J. MSA ( Mat. Stat. Apl.), vol. 10, no. 1, pp. 1–8, Jun. 2022, doi: 10.24252/msa.v10i1.28243.
  9. M.A. Juniar, A. Fania, D. Ulya, R. Ramadhan, and N. Chamidah, “Modelling crime rates in indonesia using truncated spline estimator,” BAREKENG J. Ilm. Mat. Terap., vol. 18, no. 2, pp. 1201–1216, Jun. 2024, doi: 10.30598/barekengvol18iss2pp1201-1216.
  10. A.S. Wicaksono and Suharto, “Analisis pengaruh faktor ekonomi terhadap kriminalitas di Kabupaten/Kota Daerah Istimewa Yogyakarta,” J. Kebijak. Ekon. Keuang., vol. 2, no. 1, pp. 50–57, Jun. 2023, doi: 10.20885/JKEK.vol2.iss1.art6.
  11. F. Bergas, S. Sucipto, and A. Abdullah, “Prediction of the level of crime cases using multiple linear regression in the city of Pontianak,” TEKNOSAINS J. Sains, Teknol. Inform., vol. 11, no. 2, pp. 245–256, Jul. 2024, doi: 10.37373/tekno.v11i2.1025.
  12. B. Huang, B. Wu, and M. Barry, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices,” Int. J. Geogr. Inf. Sci., vol. 24, no. 3, pp. 383–401, Mar. 2010, doi: 10.1080/13658810802672469.
  13. A.S. Fotheringham, R. Crespo, and J. Yao, “Geographical and temporal weighted regression (GTWR),” Geogr. Anal., vol. 47, no. 4, pp. 431–452, Oct. 2015, doi: 10.1111/gean.12071.
  14. S. Septriani, “The impact of economic conditions on criminality in Indonesia,” Eur. J. Develop. Stud., vol. 4, no. 3, pp. 68–74, Jun. 2024, doi: 10.24018/ejdevelop.2024.4.3.345.
  15. L. Sugiharti, R. Purwono, M.A. Esquivias, and H. Rohmawati, “The nexus between crime rates, poverty, and income inequality: A case study of Indonesia,” Economies, vol. 11, no. 2, Feb. 2023, Art. no 62, doi: 10.3390/economies11020062.
  16. W.G. Harahap, R.L. Sari, and I. Lubis, “Analysis of the effect of population density, unemployment, minimum wage, and human development index (IPM) on criminality in North Sumatra,” Int. J. Soc. Sci. Educ. Commun. Econ., vol. 2, no. 2, pp. 179–192, Jun. 2023, doi: 10.54443/sj.v2i2.127.
  17. F. Fitriyani et al., “Exploring crime rate through the lens of poverty and education in Indonesia: Evidence from panel data approach,” Theor. Practical Res. Econ. Fields, vol. 16, no. 2, pp. 448–459, Jun. 2025, doi: 10.14505/tpref.v16.2(34).14.
  18. D.G.C. Britto, P. Pinotti, and B. Sampaio, “The effect of job loss and unemployment insurance on crime in Brazil,” Econometrica, vol. 90, no. 4, pp. 1393–1423, Jul. 2022, doi: 10.3982/ECTA18984.
  19. A.F. Sianturi, A. Tampubolon, N. Hidayat, M.D. Nasution, and R. Sianturi, “Pengaruh partisipasi angkatan kerja (TPAK) dan jumlah penduduk terhadap kemiskinan di Kota Medan (2014-2023),” JALAKOTEK J. Account. Law Commun. Technol., vol. 1, no. 2, pp. 739–750, Jul. 2024, doi: 10.57235/jalakotek.v1i2.2606.
  20. Y.A. Rahman and A.D. Prasetyo, “Economics and crime rates in Indonesia,” JEJAK, vol. 11, no. 2, pp. 401–412, Sep. 2018, doi: 10.15294/jejak.v11i2.16060.
  21. C. Brunsdon, A.S. Fotheringham, and M.E. Charlton, “Geographically weighted regression: A method for exploring spatial nonstationarity,” Geogr. Anal., vol. 28, no. 4, pp. 281–298, Oct. 1996, doi: 10.1111/j.1538-4632.1996.tb00936.x.
  22. J.P. LeSage, “Regression analysis of spatial data,” J. Reg. Anal. Policy, vol. 27, no. 2, pp. 83–94, 1997.