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Abstract: I't was Shiue [ 16] who have i ntroduced the Cesaro spaces of the type Ces, and
Cess. In view of Chiue, we shall i ntroduce and study some properties of generalised
Cesaro difference sequence space. W also examine some of their basic properties viz., BK
property and some i nclusions relations will be taken care of.
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1 Introduction

By II we shall denote the set of all sequences (real or complex) and any subspace of
it is known as the sequence space. Also, let the set of non-negative integers, the set
of real numbers and the set of complex numbers be denoted respectively by N, R and
C. Let Iy, ¢ and c¢g, respectively, denotes the space of all bounded sequences , the
space of convergent sequences and the sequences converging to zero. Also, by bs, c¢s, [
and [,, we denote the spaces of all bounded, convergent, absolutely and p-absolutely
convergent series, respectively (see [1-21]).

Suppose X is a vector space (real or complex) and H : X — R. We call (X, H) a
paranormed space with H a paranorm for X’ provided :
(i) H(0) =0,
(i) H(—s) = H(s)
(i) H(s1+ s2) < H(s1) + H(ss), and
(iv) scalar multiplication is continuous, i.e., |8, — 5| — 0 and H(s, — s) — 0 gives
H(Bnsn—pPs) >0V 5 €Rand s’sin X, Where 0 represent zero vector in the space X.

Suppose A = (@) be an infinite matrix with X, Y C II. Then, matrix A represents
the A-transformation from X into Y, if for b = (by) € X the sequence Ab = {(Ab)},
the A-transform of b exists and is in Y'; where (Ab),, = ) @by as can be seen in [24]

k

and many more.
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A FK space Y is a complete metric sequence space with continuous coordinated
Pm : Y — C where p,,(u) = u,, for all u € Y and m € N. A normed F'K space is called
a BK space as defined in [26] and etc.

Let 8 = (t;) be increasing integer sequence. Then it will be called lacunary se-
quence if ty = 0 and t; = t; —t;_1 — oo. By 6 we will denote the intervals of the form
I; = (t;_1,t;] and with ¢; we will denote the ratio ~<- [4].

ti—1
The spaces T'(A) where
T(A) ={u=(uy) €ll: (Au,) € T}

was introduced by Kizmaz [16] where T' € {l, ¢, co} and Auy, = Uy — Upp—1.-

Next Tripathy and Esi [26] had studied it and considered it as follows. Consider
the integer j > 0. then

T(A) ={u=(u) : Nu e T}, for T =ls,cand c,

where Au; = u; — w5
Recently, in [27] we have the following:

Al ={u € Il : (Aug) € Z},

where .
m n
Ajug = Z(—l)“ < r ) Uk+mps
©n=0
and

The Cesaro sequence spaces Ces, and Ces,, have been introduced by Shiue [25]
and was further studied by several authors viz., Et [3], Orhan[20], Tripathy [27]. Ng
and Lee [18] has introduced the Cesaro sequence spaces X, and X, of non-absolute
type and has shown that Ces, C X, is strict for 1 < p < co. Our aim in this paper
is to bring out the spaces C,) (A, 0) and C,) [A, 0], where 1 < p < oo and study
their various properties.

2 The spaces C(, (A),0) and Cp,) [A},0], (1 < p < 00).

In this section of text, we introduce the space C(y) (A7, 8) and Cy,y [A7, 6], where 1 < p
< oo and prove that these spaces are BK.
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Following Basarir [1], Sing [2], Jagers [5], Ganie [6]-[14], Karakaya [15], Mursaleen
[17], Nuray [19], Savag [21]-[23], we introduce for a sequence of strictly positive real
numbers p = (p;), the following spaces:

pi
< oo} |

Cip) (A7, 0) = {v = (k) ) |-
( ZAmxk Z < oo}7

pi
ZAmxk < oo} ,

keI

Cp) A7, 0] = {v = (i

C1(00) (AZZ7 0) = {’U - SU_p

and

1 .

7 Zkeli

It is obvious to see that the above spaces contain some unbounded sequences
for m > 1. To see this, let § = (27) and p; = 1 = n Vj € N, then clearly,
(™) € Cloo) (AT, 0) but (j™) ¢ I

We have the following important result.
Theorem 2.1 The spaces Cyy (AL, 0), Cypy [A1', 0], are linear spaces.

Proof : The proof is omitted, as can be proved by special well known techniques.

Theorem 2.2 For 1 < p < oo, the space Cy (AT, 0) is a BK-space normed by

);
)

Proof : Let 2/ = (2]); be any Cauchy sequence in C(,) (A™,6) for each j € N.
Therefore, we have

Z Aml'k

" kel

follag = 3 il + (

i=1

and the space Csoy (AT, 0) is a BK-space normed by

m
lollag, =3 fol + sup ( S A,
i=1 T

" kel,

m o0
. . 1 , ,
) J o m, i AmM..J -
Hx—xHAgg E !l xt]—i—sup(E ; E (Ara), — Al'z)| | =0, asi,j — oo.
t=1 r=1 1" kel
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Hence, 37", |2f — ]| — 0 and (Al'zj — A™2]) — 0, as i,j — oo for each k € N.
Now, from,

7 Wi m, .1 m,.] 7 J
|$t+m - xt+m| < |An ), — Ay xk‘ + ( 0 ) ‘% - xt‘
ot () s = e,
m — 1 m m
we have |z —a}| — oo as i,j — oo, for each k € N. Therefore, (x7); is a Cauchy
sequence in C and hence converges since C is complete, and let limz} = x; for each
K2

t € N. Since z° is a Cauchy sequence, therefore for each ¢ > 0, we can find n = ny(e)
such that
‘x’—xj| <eVi,7>ng.

Thus, we have
m m
limz |z} — a]| = Z |z} — x| <€
R =1
and

hmh—Z(Ana:k—Anx{c)p:h—Z(Anxk—Anxk)p<ep

J
" kel, " kel,

for all 7 € N and i > ng. This shows that ||2" — x| s < 2€, for all ¢ > ng. Since,
P

p

+

p

" kel,

LS A

" kel,

=S (AT )

" kel,

asr — 00, we obtain x € C(p,) (A7, 0). Therefore, C,) (A}, 8) is a Banach space. Since,
Cp) (AT, 0) is a Banach space with continuous co-ordinates, that is, ||z’ — z|[,s — 0
D

for each £ € N as © — 00, consequently, it is a BK-space. Hence, the proof of the
result is complete.

Theorem 2.3 C(,) [A7, 0] with 1 < p < oo is a BK-space with norm

p) 5
and Cooy [AT, 0] is a BK- space normed by

m
follag, = 3" e +sup( ) |
i=1 r

Proof: The proof is is similar to that of previous theorem and hence can be omitted.

" kel,

m [ee]
follag = 3 il + (z
=1 r=1

hi > A,

" kel,
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Theorem 2.4 The spaces Cpy [AT, 0], Cpy [A7,0], Crooy (AT, 0), and Ciso) (AN, 0]
are neither solid nor symmetric.

Proof: We only prove the result for C) [A?, 0] and rest can be proven in a similar
fashion. So, to establish the result, we put n = p; = 1 for all j and 6 = (2"). Then,
(uj) = (™) € Clooy [, 0] but (ajuj) & Crooy [AT, 0] where a; = (—1)7 for all j € N.
Thus, Ciooy [AT, 0] is not solid. This proves the result.

3 Inclusion relations
In this section, we prove some basic inclusion relations for the given spaces.

Theorem 3.1 Form,n € N with 1 < p < 0o, we have
(i) Cpy (AR71,0) € Cpy (AT 0),
(ii) Cpy [A71,0] € Cppy A, 6,
(ii1) Cpy [AT, 0] C Ciq) [AT', 6],

(iv) Cipy (AT, 0) C Crgy (AT, 0) where 0 < p < g < 00.

Proof : We shall only prove (i). So, let z € C(,) (A7, 6). Then, we have

< +

S5 A

" kel,

hlz AT gy

" kel,

" kel,

Hence,

Thus, for each positive integer ro, we have

p r
< (Z LS arn

r=1 1" kel

To
Z hi Z APz

r=1 """ keI,

; )
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Now, taking ry — oo in the above inequality, we see that

[e’s) p o0 0
Sl s apal <2 ([ s aral S 2 s ar.

r=1| " kel, r=1| " kel, r=1 """ kel,

+

Consequently, C(,) (A1, 0) C Cppy (A, 0).
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To show inclusion is proper, we see that the sequence * = (k™~') belongs to
Cp) (A7, 0) but does not belong to Cp,) (A1, 0), for § = (27). This completes the
proof.
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