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Abstract: Functional materials are becoming an increasingly important part of our daily life, e.g. they used 

for sensing, actuation, computing, energy conversion. These materials often have unique physical, chemical, 

and structural characteristic involving very complex phase.  Many mathematical models have been devised 

to study the complex behavior of functional materials. Some of the models have been proven powerful in 

predicting the behavior of new materials built upon the composites of existing materials. One of 

mathematical methods used to model the behavior of the materials is the differential equation. Very often 

the resulting differential equations are very complicated so that most methods failed in obtaining the exact 

solutions of the problems. Fortunately, a relatively new approach via Lie symmetry gives a new hope in 

obtaining or at least understanding the behavior of the solutions, which is needed to understand the behavior 

of the materials being modeled. In this paper we present a survey on the use of Lie symmetry and related 

concepts (such as Lie algebra, lie group, etc) in modeling the behavior of functional materials and discuss 

some fundamental results of the Lie symmetry theory which often used in solving differential equations. The 

survey shows that the use of Lie symmetry and alike have been accepted in many fields and gives an 

alternative approach in studying the complex behavior of functional materials. 
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Introduction 

The fundamental ideas of Lie algebra was introduced by Sophus Lie more than century ago (1842-

1899). He studied actions of groups on manifolds and these actions were investigated infinitesimally. 

Furthermore, Lie algebras correspond to Lie groups notion. Many aspects and types of Lie algebras and  Lie 

groups attracted to study. A semi simple Lie algebra is the most interesting ones [1]. Another type is 

Frobenius Lie algebras which is introduced in the first time in [2]. Particularly, harmonic analysis for  4-

dimensional real Frobenius Lie algebras can be found in [3] which also studied representations of 4-

dimensional real Frobenius Lie groups. Roughy speaking, a representation can be thought as an action of a 

group on a certain carrier space.  

In the context of differential equations, representations theory of Lie groups is very important. To 

see this, let us assume that rotational symmetry is contained in a three-dimensional space of differentional 

equation. This implies that the space of solution is invariant.   This means that a representations of the 

rotation group SO(3) can be applied to the space of solutions(see [4] for detail) . In other words, 

representation theory can be useful to understand symmetry of differential equations. Indeed, the solutions 

set of a differential equations which symmetry is contained shall form a group and this can simplify the 

problems of differential equations.  
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On the other hand, in the application perspective, mathematical models have been used in studying 

functional materials for long time. The  models are usually directed to understand the properties of materials, 

either solids, liquids, amorphous, and their interface. Two main purposes in this area are to predict the 

behavior of materials and to design functional materials [5].  Different mathematical methods are possible 

to be used, such as response function of matrix scheduling [6],  differential equation and optimization [7], 

finite element method [8], geometric representation [9], matrix and probability [10], symmetry methods [11], 

Lie grupoid [12], symmetry method [14], and [13]. 
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In the case of the models appeared as differential equations, some attempt to find exact solutions 

are done through the use of symmetry, Lie group and Lie bracket ( [15], [16],  [17], and  [18]). In the 

following sections we discuss some algebraic aspects related to symmetry and Lie group, and Lie bracket 

related to the method in solving differential equations.  

PRELIMINARIES  

In this section, we briefly review some basic notions of Lie groups, Lie algebras,  Lie symmetries, 

and some aspects of them related to the method in determining the solutions of differential equations.  

A LIE GROUP AND A LIE ALGEBRA 

Definition 2.1. [5, p. 286]. Let 𝐺 be a group. 𝐺 is said to be a Lie group if 𝐺 is equipped with the structure 

of a smooth manifold  such that the following operations are smooth. 

1. × ∶ 𝐺 × 𝐺 ∋ (𝛼, 𝛽) ↦× (𝛼, 𝛽) = 𝛼𝛽 ∈ 𝐺. 

2. 𝐼 ∶  𝐺 ∋ 𝛼 ↦ 𝐼(𝛼) = 𝛼−1 ∈ 𝐺,   (∀ 𝛼, 𝛽 ∈).  

 

Example 2.2. Let 𝐺 ≔ ℝ𝑛 be a additive group equipped with the natural smooth manifold. Indeed, the 

smooth structure on 𝐺 given by the atlas of the chart (Id, 𝐺). Thus, the following operations  

ℝ𝑛 × ℝ𝑛 ∋ (𝛼, 𝛽) ↦ 𝛼 + 𝛽 ∈ ℝ𝑛  and   ℝ𝑛 ∋ 𝛼 ↦ −𝛼 ∈ ℝ𝑛.                  (1) 

are smooth.  

Furthermore, we discuss the notion of the  Lie bracket, which is a way of operations of  smooth 

vector fields in order to obtain new one. We notice here that the set of smooth left-invariant vector fields on 

a Lie group 𝐺 forms what we called a Lie algebra of a Lie group (see [5] and [6] for more details).  

Definition 2.3. [6, p. 174]. Let 𝑀 be a smooth manifold and 𝑇𝑀 = ∏𝜁∈𝑀𝑇𝜁𝑀 be the tangent bundle of 𝑀. 

A vector field on 𝑀 is a continuous map 

𝑋 ∶ 𝑀 ∋ 𝜁 ↦ 𝑋(𝜁) ≔ 𝑋𝜁 ∈ 𝑇𝜁𝑀.                                                      (2) 

We are interested in smooth vector fields, namely, the map 𝑋 ∶ 𝑀 → 𝑇𝑀 is smooth. In this case, the tangent 

bundle 𝑇𝑀 can be considered as the smooth manifold.  

Definition 2.4. [6, p. 186]. Let 𝑋 and 𝑌 be two smooth vector fields on a smooth manifold 𝑀. The Lie 

bracket of 𝑋 and 𝑌 is a map given by  

[𝑋, 𝑌] ∶  𝐶∞(𝑀) ∋ 𝜓 ↦ [𝑋, 𝑌]𝜓 ∈ 𝐶∞(𝑀).                                   (3) 

and defined by 

[𝑋, 𝑌]𝜓 = 𝑋𝑌𝜓 − 𝑌𝑋𝜓                                                                      (4) 

where 𝐶∞(𝑀) is set of smooth fuctions on 𝑀.  

Remark 2.5. A Lie bracket of smooth vector fields is a smooth vector field.   

Example 2.6. Here some examples of Lie bracket computations 

1. Let 𝑋1 and 𝑋2 be two smooth vector fields on  ℝ3 and defined by 
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𝑋1 = 𝑥2
𝜕

𝜕𝑥3
− 2𝑥1𝑥2

2 𝜕

𝜕𝑥2
, 

                                                                          𝑋2 =
𝜕

𝜕𝑥2
. 

Then we compute that [𝑋1, 𝑋2] = −
𝜕

𝜕𝑥3
+ 4𝑥1𝑥2

𝜕

𝜕𝑥2
.  

2. Let 𝑋1 = −𝑥3
𝜕

𝜕𝑥2
 and 𝑋2 = 𝑥3

𝜕

𝜕𝑥1
 be vector fields on ℝ3, then [𝑋1, 𝑋2] = 0.  

 

Let 𝐺 be a Lie group and 𝑋 be a smooth vector field on 𝐺. We recall a left translation as the action 

of 𝐺 on itself and for 𝑥 ∈ 𝐺, the translation is given  by 𝜚𝑥 ∶ 𝐺 ∋ 𝑔 ↦ 𝜚𝑥(𝑔) ≔ 𝑥𝑔 ∈ 𝐺. We are coming to the 

notion of left-invariant vector field on 𝐺.  

Definition 2.7. [5, p. 189]. Let 𝑋 be a vector fields on a Lie group 𝐺. 𝑋 is said to be left-invariant if  

(𝜚𝑥)∗𝑋 = 𝑋,            (5) 

For every 𝑥 ∈ 𝐺.  

Remark 2.8.  If 𝑋 and Y are smooth left-invariant vector fields, so is [𝑋, 𝑌].   

Furthermore, We are ready to define the notion of the Lie algebra 𝔤 of the Lie group 𝐺 which 𝔤 can 

be considered as the set of smooth left-invariant vector fields on 𝐺.  

Definition 2.9. [7, p. 1]. A real vector space  𝔤 is said to be a Lie algebra if 𝔤  is edndowed with a bracket 

given by  

[ , ] ∶  𝔤 × 𝔤 ∋ (𝐴, 𝐵) ↦ [𝐴. 𝐵],                     (6)  

satisfying the following properties  

1. The bracket [ , ] is bilinear, that is, for 𝛼, 𝛽 ∈ ℝ 

 

[𝛼𝐴 + 𝛽𝐵, 𝐶] = 𝛼[𝐴, 𝐶] + 𝛽[𝐵, 𝐶]  and  [𝐶, 𝛼𝐴 + 𝛽𝐵] = 𝛼[𝐶, 𝐴] + 𝛽[𝐶, 𝐵].                      (7) 

 

2.  The bracket [ , ] is antysimmetry.  

[𝐴, 𝐵] = −[𝐵, 𝐴].                                                              (8) 

3. The bracket [ , ] satisfies the Jacoby identity.   

 

[[𝐴, 𝐵], 𝐶] = [𝐴, [𝐵, 𝐶]] + [𝐵, [𝐶, 𝐴]].                             (9) 

for all 𝐴, 𝐵, 𝐶 ∈  𝔤.  

Example 2.10.  The following are familiar examples of Lie algebras 

1. The space 𝑀𝑛(ℝ) consisting of 𝑛 × 𝑛 real matrices is a Lie algebra with bracket [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴.  

2. Let 𝑀 be a smooth manifold and Γ(𝑀) be set of smooth vector fields on 𝑀, then Γ(𝑀) is a Lie algebra. 

Furthermore, Γ𝑙(𝑀) ⊂ Γ(𝑀)  consisting of left-invariant smooth vector fields on 𝑀 is also a Lie algebra.  

One of important things is about one-parameter Lie group as can be seen as follows.  

Theorem 2.11. [5, p.305].  Let 𝐺 be a Lie group whose Lie algebra is 𝔤. Each continuous one-parameter 

group  
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𝜉 ∶  ℝ ⊇ 𝐼 → 𝐺,                                                              (11) 

can be written as a smooth group homomorphism  𝜉𝑎 ∶  ℝ ⊇ 𝐼 ∋ 𝑡 ↦ exp(𝑡𝑎) ∈ 𝐺 for every 𝑎 ∈ 𝔤.  

Lie Symmetries Of Ordinary Differential Equations (ODE) 

To understand the notion of symmetries of differential equation, we interpret this notion in 

geometrical object as explained in [13, 14, 15]. This means, a symmetry is a transformation that preserves 

the structure of object. Let us imagine that an equilateral triangle was rotated 120∘ through its center. We 

can see that this unchanged triangle.  This idea is generalized to the case of symmetries of differential 

equations (see [14] for more examples). Roughly speaking, a symmetry is a transformation given by  

𝜓 ∶ 𝑦 ↦ �̂�                                    (12) 

Where 𝑦 and �̂�   are both solutions of a given differential equation.                                  

Let 𝑥′ =
𝑑𝑥

𝑑𝑡
= 𝜋(𝑡, 𝑥) be a first-order of ordinary differential equation (linear or non-linear) and Δ be 

the set of solution in (𝑥, 𝑡) form. We must find a symmetry that maps such solution to the same set of 

solution Δ̅ in (𝑡̅, �̅�) form. In other words, we should find that  

𝜓 ∶ (𝑡, 𝑥) ↦  (𝑡̅, �̅�).                                                                         (13) 

is a symmetry. Thus, the formula  

�̅�′ =
𝜕𝑡(�̅�)+𝑥′𝜕𝑥(�̅�)+𝑥′′ 𝜕𝑥′(�̅�)+⋯

𝜕𝑡(𝑡̅)+𝑥′𝜕𝑥(𝑡̅)+𝑥′′ 𝜕𝑥′(𝑡̅)+⋯
= 𝜋(𝑡̅, �̅�)  when 𝑥′ = 𝜋(𝑡, 𝑥).                     (14) 

is the symmetry condition for 𝑥′, where 𝜕𝑥 =
𝜕

𝜕𝑥
 .  

Example 2.12. [14, p. 13]. For the differential equation  

𝑥′ =
𝑑𝑥

𝑑𝑡
= 𝑥2𝑒−𝑡 + 𝑥 + 𝑒𝑥,  

Γ𝜀 ∶ (𝑡, 𝑥) ↦ (𝑡̅, �̅�) = (𝑡 + 2𝜀, 𝑥𝑒2𝜀) is a symmetry. Indeed, using (14) we obtain that �̅�′ = 𝑥′𝑒2𝜀 when 𝑥′ =

𝑥2𝑒−𝑡 + 𝑥 + 𝑒𝑥.  

∎ 

A one-parameter Lie group can act on points in the plane. By a suitable choice 𝜀 we can map (𝑡, 𝑥) 

and we can collect these points in what we called the orbit Θ at the point (𝑡, 𝑥). By choosing 𝜀 = 0 we have  

(𝑡̅, �̅�) = (𝑡, 𝑥). The points are called invariants if they can be mapped to itself by using the Lie symmetries. 

Let 𝛼(𝑡̅, �̅�) and 𝛽(𝑡̅, �̅�) be the tangent vector to the orbit Θ at the point (𝑡̅, �̅�), where 

𝛼(𝑡̅, �̅�) =
𝑑𝑡̅

𝑑𝜀
        and      𝛽(𝑡̅, �̅�) =

𝑑�̅�

𝑑𝜀
.                    (15) 

Particularly, for 𝜀 = 0 in the latter formulas, we have 𝛼(𝑡, 𝑥) and 𝛽(𝑡, 𝑥). In the Example 2.12., we can see 

that 

(𝛼(𝑡, 𝑥), 𝛽(𝑡, 𝑥)) = (2, 2𝑥).  

Now we shall introduce the notion of canonical coordinates. We introduce the coordinates 

(𝑝, 𝑞) = (𝑝(𝑡, 𝑥), 𝑞(𝑡, 𝑥)) such that (�̅�, �̅�) = (𝑝, 𝑞 + 𝜀).           (16) 
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We can obtain these canonical coordinates by using characteristic equations. Let 𝑓(𝑡, 𝑥) be a solution for 

the equation  

𝑑𝑥

𝑑𝑡
=

𝛽(𝑡,𝑥)

𝛼(𝑡,𝑥)
                                                                    (17) 

We obtain 𝑝(𝑡, 𝑥) = 𝑓(𝑡, 𝑥). The coordinate 𝑞(𝑡, 𝑥) can be computed by solving 

(∫
1

𝛼(𝑡,𝑥(𝑝,𝑡))
𝑑𝑡)        where 𝑝 = 𝑝(𝑡, 𝑥)                     (18) 

Solution for First Order of ODE Using Lie Symmetries 

To make clear our discussion before, let us give the complete computations for the Riccati equation in [14, 

p.27] as follows: 

Example 2.13. [14, p. 27]. Let the differential equation  

 𝑥′ =
𝑑𝑥

𝑑𝑡
= 𝑡𝑥2 −

2𝑥

𝑡
−

1

𝑡3,          (𝑡 > 0)                                 (19) 

be the first order ODE. Using (14) we can compute that �̅�′ =
𝑑�̅�

𝑑𝑡̅
=

𝑥′

𝑒3𝜀 = 𝜋(𝑡̅, �̅�)  when  𝜋(𝑡, 𝑥) = 𝑡𝑥2 −
2𝑥

𝑡
−

1

𝑡3  , where (𝑡̅, �̅�) = (𝑒𝜀𝑥, 𝑒−2𝜀𝑦) . Thus, (𝑡̅, �̅�) = (𝑒𝜀𝑥, 𝑒−2𝜀𝑦)  is one of Lie symmetries for this ODE. 

Moreover, the tangent vectors  at 𝜀 = 0 is of the  forms  𝛼(𝑡, 𝑥) = 𝑡 and 𝛽(𝑡, 𝑥) = −2𝑥. Using formulas (17) 

and (18) we obtain the canonical coordinates as follow: 

1. ∫
1

𝑥
 𝑑𝑥 = ∫

−2

𝑡
𝑑𝑡. Thus we get  𝑝(𝑡, 𝑥) = 𝑡2𝑥.  

2. 𝑞(𝑡, 𝑥) = ∫
1

𝑡
𝑑𝑡 = ln 𝑐𝑡.  In other words, (𝑝(𝑡, 𝑥), 𝑞(𝑡, 𝑥)) = (𝑡2𝑥, ln 𝑡).  

Applying chain rules, we can compute that 

𝑑𝑞

𝑑𝑝
=

𝜕𝑞

𝜕𝑡
+𝜋(𝑡,𝑥)

𝜕𝑞

𝜕𝑥
𝜕𝑝

𝜕𝑡
+𝜋(𝑡,𝑥)

𝜕𝑝

𝜕𝑥

=
1

𝑡

2𝑡𝑥+𝜋(𝑡,𝑥)𝑡2 =
1

𝑡4𝑥2−1
=

1

𝑝2−1
 . 

Solving the latter equation we obtain 𝑞 =
1

2
ln |

𝑝−1

𝑝+1
|. Therefore, the solution is of the form 𝑥 =

𝑡2+𝑘

−𝑡4+𝑘𝑡2 where 

𝑘 is a constant.  

Further information about this solution of (19) can be seen in Figure 1. below  

 

Figure 1. Plots of the solutions from a numerical scheme for various initial values at t=1 (red) and from  

      the Lie Symmetries for various values of k (blue). 
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Conclusions 

We discussed some fundamental results of the Lie symmetry theory which effectively used in 

solving differential equations. Lie symmetry gives a new tool to find exact solutions for differential 

equations. Although in this survey we use the Lie symmetry for the first-order differential equations but in 

fact the method can be generalized for higher order ODEs and system of ODEs.  
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