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Abstract: Clustering is a method of the grouping which is done by looking at the similarities between 

data in a data set. Fuzzy clustering is a clustering method that uses fuzzy set membership values as the 

basis for grouping data. Fuzzy Subtractive Clutering (FSC) is a fuzzy clustering method where the 

number of clusters to be formed is unknown. The concept of FSC is to determine the highest data density 

and the data with the most number of neighbors will be selected as the center of the cluster. Thus, the 

size of the proximity or distance between points is needed to determine the members of each cluster. The 

distance used in this study is a combination of the Minkowski and Chebyshev distances. The number of 

clusters formed will be evaluated using the Partition Coefficient (PC) value where the highest PC value 

indicates the best number of clusters. The results obtained indicate that the best clusters are three clusters 

with a PC value of 0.7422. 

Keywords: Clustering, Fuzzy clustering, Fuzzy subtractive clustering 

Introduction 
In everyday life, a lot of data comes from various observations and measurements. These data 

have different characteristics. However, these data sets can be grouped by looking at the similarity of each 

data. Therefore, there is a method, namely clustering, which is used to group data that has various 

characteristics. 

Clustering is a grouping that is done by looking at the similarities between data in a data set. The 

purpose of clustering is to classify data into several groups by looking for patterns in the data set [1], [2]. 

The basic concept in clustering is to classify data in clusters that are very similar to other data in the same 

cluster, but different from data contained in other clusters. Therefore, the higher the similarity of data in 

one cluster, the better the cluster formed [3]. 

Fuzzy clustering is a clustering method that uses fuzzy set membership values as the basis for 

grouping data. Each record will have the possibility of being a member of several groups. This means 

that each data is not a member of one group [4]. There are several methods that can be used to perform 

fuzzy clustering, including Fuzzy C-Means and Fuzzy Subtractive Clustering. 

Fuzzy Subtractive clustering (FSC) is a fuzzy clustering method where the number of clusters to be 

formed is unknown. The randomized initialized membership matrix is not used in this method, so the 

results will be more consistent [5], [6]. The basic concept of the FSC method is to determine the highest 

data density and the data with the most number of neighbors will be selected as the center of the cluster. 

Then, the data point that becomes the center of the cluster will be reduced in density and the algorithm 

will select another data point that has the most neighbors to become another cluster center [7], [8]. 

Several studies have been carried out using the Fuzzy Subtractive Clustering method, other studies 

have been conducted by [9] used to classify polymer candidates based on some similarity in interaction 

with the chemical targeted for sensing. The results obtained were compared with the Fuzzy C-Means 

method where the FSC method produced a better selection than the FCM method in this study. In 2019, 

fuzzy subtractive clustering is used by [10] which is combined with particle swarm optimization to 

perform classification. Other research was also carried out by [11] with the entropy-based fuzzy 

subtractive clustering method to identify the multi-model algorithm structure. Fuzzy subtractive 
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clustering has also been used by [12] to make predictions on the stock market. Besides, fuzzy subtractive 

clustering is also used by [13] to analyze patterns of changes in value movements in sales data. 

 The fuzzy subtractive clustering method requires a similarity measure to determine the number 

of points that have the most neighbors. The distance most often used to determine the measure of 

similarity is the Euclidean distance. Therefore, this study will use a combination of the Minkowski and 

Chebyshev distances proposed by Rodrigues. This distance has been applied by [14] to perform 

classification using K-Nearest Neighbors (KNN) and produce a high degree of accuracy. The FSC 

method is used on data that does not have a certain class. In addition, [15] it also applies a combination 

of minkowski chebyshev distances for clustering cases using Fuzzy C-Means. Based on the description 

above, the researcher will conduct research using the fuzzy subtractive clustering method with a 

combination of Minkowski and Chebyshev distances. 

Methods 

In this study, the approach used is a quantitative approach. A quantitative approach is an approach 

used in a study where the data to be analyzed is in the form of numbers (numeric). Besides, this research 

will also use more tables or graphs to display the results of data analysis. The subject used is one of the 

UCI Machine Learning data totaling 589 data. 

The data used in this research is quantitative data. Quantitative data is data that can be measured 

directly or an explanation is expressed in numerical form. In this study, the quantitative data used were 

age (𝑋1
) , gender (𝑋2

) , ALB (𝑋3
) , ALP (𝑋4

) , ALT (𝑋5
) , AST (𝑋6

), BIL (𝑋7
),  CHE (𝑋8

),  CHOL
(𝑋9

), 𝐺𝑅𝐸𝐴  (𝑋10
), GGT (𝑋11

), 𝑎𝑛𝑑  𝑃𝑅𝑂𝑇 (𝑋12
).

The method used in this study is fuzzy subtractive clustering using a combination of Minkowski 

and Chebyshev distances. The cluster evaluation that will be used is the Partition Coefficient (PC) [16]. 

Data processing was carried out with the help of Jupyter  Notebook Software with the Python 

programming language.  

Combination of Minkowski and Chebyshev distances with weights 𝑤1 and w2  given in the

equation of the distance function defined in the equation [14]: 

𝑑(𝑤1,𝑤2 ,𝑝) (𝑥, 𝑦) = 𝑤1 √∑ |𝑥𝑚 − 𝑦𝑚
|𝑝𝑘

𝑚=1

𝑝
+ 𝑤2 𝑚𝑎𝑥𝑚=1

𝑘 |𝑥𝑚 − 𝑦𝑚
| (1) 

where 𝑤1 ,w2 > 0 and 𝑝 ≥ 1.

The steps in this research are as follows [17]: 

1. Determine the parameter values, namely radius (r), squash factor (q), accept ratio (ar), reject ratio

(rr).

2. Converting natural numbers to fuzzy number form with the following equation [18]:

(𝑥) = {

1  𝑥 ≤ 𝑎

𝑒
−(

𝑥−𝑎

𝑏−𝑎
)−𝑒−𝑠

1−𝑒 −𝑠 𝑎 ≤ 𝑥 ≤ 𝑏

0  𝑥 ≥ 𝑏

 (2) 

where a and b are the smallest and greatest values of the data. 

3. Determine 𝐷𝑖 ; 𝑖 = 1,2,3, … , 𝑛 or potential each data point with the following steps:

Step 1: calculate the distance for each data using the following equation:

𝐷𝑖𝑠𝑡𝑖𝑗 = (
𝑤1 √∑ |𝑥𝑚 −𝑦𝑚|𝑝𝑘

𝑚 =1

𝑝
+𝑤2 𝑚𝑎𝑥𝑚 =1

𝑘 |𝑥𝑚 −𝑦𝑚|

𝑟
) (3) 

Minkowski and Chebyshev distances are used to calculate the distance between data points. Then, 

this distance will be used to calculate the potential data using step 2. 

Step 2: determine the initial potential of each data point using the following equation: 

𝐷𝑖 = ∑ 𝑒−4(∑ 𝐷𝑖𝑠𝑡𝑖𝑗
2𝑚

𝑗=1
)𝑛

𝑘 =1 (4) 

where 𝐷𝑖  is the i-th data potential.

4. Determines the greatest potential value at each data point:

𝑀 = 𝑚𝑎𝑥 [𝐷𝑖|𝑖 = 1,2, … , ]; for the first iteration.
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𝑍 = 𝑚𝑎𝑥[𝐷𝑖|𝑖 = 1,2, … , ]; for the second, third iteration, and so on. 

5. Calculating the ratio (R) of prospective cluster centers using the equation: 

𝑅 =
𝑍

𝑀
 (5) 

𝑅 = the ratio between the greatest potential in the first iteration with the greatest potential in the 

next iteration. 

In the first iteration, Z = M. 

6. Checking the prospective cluster center to become a cluster center by considering the following 

conditions: 

Condition 1: if the ratio> accept ratio, then the prospective cluster center is accepted as the new 

cluster center. 

Condition 2: If the reject ratio <ratio ≤ accept ratio, then it will be checked the feasibility of the 

cluster center claon. If the prospective cluster center cannot become a cluster center, the iteration is 

terminated because there are no more data considered to become a cluster center candidate. The 

steps in condition 2, that is: 

For  𝑘 = 1,2, … , 𝑝, where p = number of clusters 

𝑆𝑑𝑘 = ∑ (
𝑉𝑗−𝐶𝑘𝑗

𝑟
)

2
𝑚
𝑗=1  (6) 

𝑆𝑑𝑘 = the distance between the prospective cluster center and the previous cluster center.  

𝑉𝑗     = prospective cluster center. 

𝐶𝑘𝑗  = the center of the k-th cluster in the j-th variable. 

if (𝑀𝑑 < 0) or (𝑆𝑑𝑘 < 𝑀𝑑), then 𝑀𝑑 = 𝑆𝑑𝑘, 

𝑀𝑑𝑠 = √𝑀𝑑 (7) 

 

where Mds is the closest distance between the prospective cluster center data and the cluster center . 

If (𝑟𝑎𝑠𝑖𝑜 +  𝑀𝑑𝑠) ≥ 1 ; the prospective cluster center is accepted as the new cluster center. 

Meanwhile, if (𝑟𝑎𝑡𝑖𝑜  +  𝑀𝑑𝑠)  <  1 then the prospective cluster center is not accepted and will not 

be reconsidered as a new cluster center (data potential is set equal to zero). 

Condition 3: If the ratio is ≤ reject ratio, then the iteration will stop and no more data will become 

the center of the cluster. 
7. If a new cluster center has been obtained, then the data potential around the previous cluster center 

is reduced using equation (8) 

𝐷𝑖
𝑡 = 𝐷𝑖

𝑡−1 − 𝐷𝑐𝑘𝑖
 (8) 

where 𝐷𝑐𝑘𝑖
 is as follows: 

𝐷𝑐𝑘𝑖
= 𝑍 ∗ 𝑒

−4[∑ (
𝐶𝑘𝑗 −𝑥𝑖𝑗

𝑟∗𝑞
)

2
𝑚
𝑗 =1 ]

 (9) 

𝐷𝑖
𝑡     = the potential of the i-th data in the t-iteration. 

𝐷𝑖
𝑡−1 = the potential of the i-th data in the iteration (t-1). 

𝐷𝑐𝑘𝑖
  = potential k-data in the iteration. 

𝐶𝑘𝑗    = the center of the k-th cluster in the j-th variable. 

𝑥 𝑖𝑗     = the ith data in the j-th variable. 

𝑟       = radius. 

𝑞       = squash factor. 

8. Calculate the sigma cluster value for each variable using the equation (10): 

𝜎𝑗 =
𝑟 ∗(𝑋𝑚𝑎𝑥𝑗

−𝑋𝑚𝑖𝑛𝑗
)

√8
, 𝑗 = 1,2, … , 𝑚 (10) 

𝜎𝑗        = sigma in the jth variable. 

𝑋𝑚𝑎𝑥𝑗
= the largest value in the j-variable. 

𝑋𝑚𝑖𝑛𝑗
= the smallest value in the j-variable. 

9. Calculating the value of the degree of membership using the equation (11): 
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𝜇𝑘𝑖
= 𝑒

− ∑ (
𝑥𝑖𝑗−𝐶𝑘𝑗

√2𝜎𝑗
)𝑚

𝑗=1
 (11) 

𝜇𝑘𝑖
= the membership value of the k-th cluster in the i-data. 

𝑥 𝑖𝑗 = the ith data in the j-th variable. 

10. Calculate the value of the partition coefficient or Partition Coefficient (PC) to determine the best 

number of clusters. The PC score evaluates the degree of membership regardless of the value of the 

data. The quality of the clusters will be semi-better if the PC value is getting bigger (closer to 1). This 

index measures the amount of overlap between groups. PC index equation by  [16] sebagai berikut: 

𝜇𝑘𝑖
= 𝑒

− ∑ (
𝑥𝑖𝑗−𝐶𝑘𝑗

√2𝜎𝑗
)𝑚

𝑗=1
 (12) 

where N is the number of research objects, K is the number of clusters, and μ_ij is the membership 

value of the ith object with the center of the j group. 

 

Results and Discussions 

Fuzzy Subtractive Clustering algorithm is simulated on one of the data obtained from UCI Machine 

Learning which contains laboratory values from blood donors and hepatitis C patients The data used 

were 589 with 12 variables. The variables used were age (𝑋1
), gender (𝑋2

), ALB (𝑋3
), ALP (𝑋4

), ALT 
(𝑋5

) , AST (𝑋6
), BIL (𝑋7

),  CHE (𝑋8
),  CHOL (𝑋9

), 𝐺𝑅𝐸𝐴  (𝑋10
), GGT (𝑋11

), 𝑎𝑛𝑑  𝑃𝑅𝑂𝑇 (𝑋12
) . The 

minkowski and chebyshev distance approaches were used by [19] and [15] to do clustering with the FCM 

method. Therefore, because FSC is also a clustering method and uses the distance function to determine 

data potential, the Minkowski and Chebysev distances are applied in this study. Data processing was 

carried out using Python programming language.  

In this study, the value of the radius of the data points around the center of the cluster to which the 

potential data reduction will be measured is 1.25 or also known as the squash factor (q) value. There is 

an accept ratio value which indicates that the lower limit value of the data point that is a candidate for 

the cluster center and the reject ratio which indicates that the upper limit value of the data point that is a 

candidate for the cluster center is not allowed to become a cluster center [13], [20]. The value of accept 

ratio, reject ratio and weight used in this study are 0.8, 0.2, 3.0 and 4.0. Meanwhile, the radii are r = 

1.62,1.98 and 2.04. The first step is to convert the data to fuzzy numbers using equation (2) and the results 

are as shown in Table 1. 
Table 1. Fuzzy numbers 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 𝑿𝟓 𝑿𝟔 𝑿𝟕 𝑿𝟖 𝑿𝟗 𝑿𝟏𝟎 𝑿𝟏𝟏  𝑿𝟏𝟐 

0.7571 0 0.5321 0.8471 0.9672 0.9430 0.9499 0.5134 0.6896 0.8617 0.9815 0.3035 

0.7571 0 0.5321 0.7857 0.9188 0.9304 0.9766 0.2435 0.4690 0.9055 0.9731 0.1577 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.2584 1 0.7010 0.7295 0.9874 0.6112 0.6791 0.9749 0.6293 0.9156 0.8604 0.0663 

The cluster centers obtained are as follows: 

𝐶2.04 = [0.7571 0 0.5321 0.8471 0.9672 0.9430 0.9499 0.5134 0.6896 0.8617 0.9815 0.3035
0.1863 1 0.6450      0     0.9758 0.5689 0.6670 0.6174 0.2941 0.9311       0      0.3142

] 

𝐶1.98 = [
0.7571 0 0.5321 0.8471 0.9672 0.9430 0.9499 0.5134 0.6896 0.8617 0.9815 0.3035
0.1863 1 0.6450      0       0.9758 0.5689 0.6670 0.6174 0.2941 0.9311       0     0.3142
0.2302 1 0.8999 0.3913       0      0.4431 0.9543 0.6368 0.4792 0.9649 0.4264 0.7145

] 

𝐶1.62 = [

0.7571
0.1863

0
1

0.5321 0.8471 0.9672 0.9430 0.9499 0.5134 0.6896 0.8617 0.9815 0.3035
0.6450 0.0000 0.9758 0.5689 0.6670 0.6174 0.2941 0.9311 0.0000 0.3142

0.2302
0.5308

1
1

0.8999 0.3913 0.0000 0.4431 0.9543 0.6368 0.4792 0.9649 0.4264 0.7145
0.6269 0.7566 0.9864 0.7880 0.0257 0.9687 0.4240 0.8846 0.6884 0.2846

] 

The center of the cluster above is the result obtained from several radius. 𝐶1.62  represents cluster 

centers of radius 1.62,  𝐶1.98 indicates cluster centers of radius 1.98 and 𝐶2.04 denotes cluster centers of 

radius 2.04. The number of clusters is indicated by the number of rows and the number of menu columns, 

indicating the number of variables used.  

Then, the membership value of each data will be calculated using equation (10) and the following 

results are obtained. 
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Table 2. Membership values of 𝑟 = 2.04 

The μ value in the cluster to  

1 2 

1 0.0391 

0.8633 0.0399 

⋮ ⋮ 
0.1937 0.1830 

 

In Table 2, the first data tends to be included in cluster 1 because the largest degree of membership in 

the first data is located in cluster 1. The second data tends to enter cluster 1 because the largest 

membership value in the second data is in cluster 1, and so on until the 589th data. 

Table 3. Membership values of 𝑟 = 1.98 

The μ value in the cluster to 

1 2 3 

1 0.0320 0.0477 

0.8556 0.0328 0.0401 

⋮ ⋮ ⋮ 
0.1751 0.1649 0.1512 

Table 3 shows that the first data goes to the first cluster. This is because the largest membership value in 

the first data can be in the first cluster, and so on until the 589th data. 

Table 4. Membership values of 𝑟 = 1.62 

The μ value in the cluster to 

1 2 3 4 

1 0.0059 0.0106 0.0389 

0.7921 0.0061 0.0082 0.0256 

⋮ ⋮ ⋮ ⋮ 
0.0741 0.0677 0.0595 0.2707 

 
Similar to Table 4, the first and second data are included in the second cluster. This is because the 

largest membership value in the first and second data is found in the second cluster. This was done until 

the 589th data. 

Then, the number of clusters that have been obtained will be evaluated using equation (11). The 

results of the Partition Coefficient value of the number of clusters formed can be seen in the following 

figure.  

 

Figure 1. Partition Coefficient Value 

Figure 1 shows the PC value of each number of clusters obtained. The PC value is used to evaluate 

clusters to determine which number of clusters is the best. PC value for the number of clusters 2 with a 
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radius of  2.04 is 0.6692, the number of clusters 3 with a radius of 1.98 is 0.7422 and the number of 

clusters 4 with a radius of 1.62 is 0.6059.  

Based on the PC value above, it can be seen that the largest PC value is 0.7422. Therefore, the number 

of cluster 3 has the best cluster quality because it has the largest PC value. This corresponds to [16], [21] 

where the greater the PC value means that the quality of the clusters obtained is getting better . 

Conclusion 

This study presents a modified Fuzzy Subtractive Clustering using a combination of Minkowski 

and Chebysev distances. This method is used to find the best group by looking at the Partition Coefficient 

(PC) value. Based on the proposed method, the results obtained indicate that the best cluster is 3 clusters 

with a PC value of 0.7422. 
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