

Indonesian Journal of Chemical Analysis

Homepage: https://journal.uii.ac.id/IJCA

Sintesis dan Karakterisasi SiO₂@APTES-IIP Sebagai Material Fungsional Penjerap Ion Kadmium (II)

Indah Puspita Sari^{a,*}, M. Bachri Amran^b

^a Institut Teknologi Sumatera, Indonesia ^b Institut Teknologi Bandung, Indonesia *corresponding author: <u>indah.sari@km.itera.ac.id</u> DOI : <u>10.20885/ijca.vol4.iss1.art3</u>

ARTIKEL INFO

Diterima : 01 Februari 2021 Direvisi : 03 Maret 2021 Diterbitkan: 07 Maret 2021 Kata kunci : *ion imprinted polymer*, silika, kadmium, fungsionalisasi, APTES

ABSTRAK

Sintesis SiO₂@APTES-IIP dan SiO₂@APTES-NIP melalui proses sol-gel melibatkan 3-amounium propyl triethoxy silane (APTES) sebagai monomer fungsional, tetraethylorthosilicate (TEOS) sebagai crosslinker, Cd (II) sebagai cetakan dan SiO₂ sebagai inti. Karakterisasi SiO₂@APTES-IIP dan SiO₂@APTES-NIP dilakukan dengan menggunakan FTIR. Hasil karakterisasi dengan FTIR menunjukkan beberapa puncak penting pada bilangan gelombang 2939 cm⁻¹ dan 1411 cm⁻¹ yang berasal dari vibrasi gugus C-H serta pada bilangan gelombang 1564 cm⁻¹ yang berasal dari vibrasi gugus N-H hal tersebut membuktikan bahwa silika gel telah berhasil terfungsionalisasi oleh monomer APTES. Morfologi dan komponen penyusun material SiO2@APTES-IIP dianalisis menggunakan SEM dan EDS. Berdasarkan metode batch SiO2@APTES-IIP memiliki kapasitas retensi sebesar 7,34 mg/g pada kondisi optimum pH 7 dan waktu kontak 90 menit. Hasil analisis menunjukkan bahwa, model isoterm adsorpsi mengikuti model isoterm adsorpsi Langmuir.

ARTICLE INFO

Received : 01 February 2021 Revised : 03 March 2021 Published :07 March 2021 Keyword : ion imprinted polymer, silica, cadmium, functionalization, APTES

ABSTRACT

The synthesis of SiO₂@APTES-IIP and SiO₂@APTES-NIP through a sol-gel process involves 3-ammonium propyl triethoxy silane (APTES) as a functional monomer, tetraethylorthosilicate (TEOS) as a crosslinker, $Cd(II \text{ as a template, and } SiO_2 \text{ as the core.}$ Characterization of SiO₂@APTES-IIP and SiO₂@APTES-NIP has been carried out using FTIR. The results of characterization by FTIR showed several important peaks at wave numbers 2939 cm⁻¹ and 1411 cm⁻¹ originating from the C-H group vibrations and at 1564 cm⁻¹ wavenumbers originating from the N-H group vibrations, this proves that the silica gel has been successfully functionalized by APTES monomer. The morphology and components of the SiO₂@APTES-IIP material were analyzed using SEM and EDS. Based on the batch method SiO₂(@,APTES-IIP has a retention capacity of 7.34 mg/g at optimum conditions of pH 7 and a contact time of 90 minutes. The results of the analysis show that the adsorption isotherm model follows the Langmuir adsorption isotherm model.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

1. PENDAHULUAN

Kadmium merupakan logam berat beracun yang secara alami terdapat di ekosistem. Keberadaan kadmium di ekosistem semakin meningkat karena adanya aktivitas antropogenik yang dapat mengancam kehidupan hewan dan manusia [1]. Kadmium yang masuk kedalam rantai makanan mampu mengkontaminasi tubuh manusia sehingga dapat menimbulkan penyakit kardiovaskular, ginjal dan kanker [2]. Residual kadmium bisa masuk ke rantai makanan melalui konsumsi sayuran [3] dan ikan yang terkontaminasi [4]. Berdasarkan hasil penelitian diketahui bahwa konsentrasi kadmium pada air sungai di Indonesia berada pada rentang $< 3.0 \pm 0.0 - 6.3 \pm$ 0,3 ppm [5]. Walaupun konsentrasi kadmium yang di temukan di perairan Indonesia cukup kecil namun kontaminasi logam berat beracun seperti kadmium yang terakumulasi dapat mempengaruhi kesehatan [6]. Teknik pemisahan menggunakan membran, elektrokoagulasi dan presipitasi kimia sering digunakan untuk menghilangkan kadmium dalam air, namun penerapannya dibatasi oleh biaya operasional yang tinggi [7]. Salah satu trend baru di kimia analitik adalah penggunaan polimer bercetakan ion sebagai penjerap untuk logam secara spesifik. (ion imprinted polymers) [8]. Polimer bercetakan ion memiliki fungsi yang baik sebagai penjerap spesifik dalam prakonsentrasi kadmium [9] Material ini pun memiliki ketahanan yang baik dan dapat digunakan berulang kali sehingga biaya yang dikeluarkan untuk pembuatannya relatif sedikit [10].

Prinsip pencetakan ion didasarkan pada penambahan ion logam yang berfungsi sebagai cetakan ke dalam campuran reaksi polimer. Kemudian ion logam tersebut diekstrak dari matriks polimer yang telah terbentuk sehingga menciptakan sisi aktif yang khas terhadap ion cetakan itu sendiri [11]. Polimer bercetakan ion dapat berperan sebagai adsorben yang menjanjikan untuk menghilangkan ion logam kadmium [12]. Penelitian sebelumnya telah melaporkan sintesis material polimer bercetakan ion yang disintesis menggunakan 1-merkaptooktana sebagai ligan dan asam metakrilat sebagai monomer fungsional memiliki kapasitas adsoprsi sebesar 62.9 mg.g⁻¹ terhadap logam kadmium pada sampel air [13]. Penelitan lainnya juga melaporkan selektifitas polimer bercetakan ion kadmium memiliki nilai yang baik walaupun ada logam lain yang berperan sebagai pengganggu [7]. Uji adsorpsi dan desorpsi menunjukan material polimer bercetakan ion dapat digunakan berulang hingga 8 kali, hal ini menunjukan bahwa material polimer bercetakan ion memiliki nilai *reuseability* yang baik [14].

Pembentukan polimer bercetakan ion dinilai dapat menghasilkan material dengan selektifitas, kapasitas adsorbsi dan stabilitas termal yang tinggi [15]. Metode yang sensitif, spesifik dan efisien dibutuhkan untuk menghilangkan kadmium dalam air. Atas dasar latar belakang yang telah di paparkan maka penelitian ini dilakukan. Polimer bercetakan ion ber-inti silika (SiO₂@APTES-IIP) dan polimer tidak bercetakan ion ber-inti silika (SiO₂@APTES-NIP) disintesis melalui teknik surface imprinting dengan proses sol-gel yang dinilai cukup sederhana [16]. 3-Amounium propyltrethoxysilane (APTES) digunakan sebagai monomer fungsional, tetraethylorthosilicate (TEOS) sebagai crosslinker, ion logam Cd(II) sebagai cetakan dan SiO₂ sebagai inti telah disintesis dalam pembuatan material SiO₂@APTES-IIP. Dalam penelitian ini telah dilakukan karakterisasi morfologi dan analisis sifat retensi dari SiO₂@APTES-IIP terhadap logam Cd(II).

2. METODE

2.1. Material

Bahan yang digunakan pada penelitian ini diantaranya garam Cd-asetat (Merck), Silika gel untuk kromatografi, TEOS 98% (Merck), APTES 98% (Sigma-Aldrich), HNO₃ 69% (Merck), CH₃COOH 96% (Merck), dan bahan-bahan penunjang lainnya seperti aqua DM dan aqua bidestilat.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

2.2. Sintesis SiO₂@APTES-IIP dan SiO₂APTES-NIP

Sintesis SiO₂@APTES-IIP dan SiO₂@APTES-NIP melalui proses sol-gel melibatkan 3amounium propyl tri ethoxy silane (APTES) sebagai monomer fungsional, tetraethylorthosilicate (TEOS) sebagai cross linker, logam Cd(II) sebagai template dan SiO₂ sebagai inti. Penggunaan APTES sebagai monomer fungsional dalam modifikasi silika gel dinilai cukup sederhana dan efisien [17]. Gambar 1 menunjukkan proses terjadinya prapolimerisasi antara APTES dan ion logam Cd(II). Kompleks yang terbentuk antara APTES dan ion logam Cd(II) kemudian mengalami proses hidrolisis dan kondensasi dengan silika gel teraktivasi, sehingga terjadi proses fungsionalisasi silika gel yang ditunjukkan pada Gambar 2. Sintesis SiO₂@APTES-IIP yang sudah terbentuk dibilas menggunakan etanol kemudian di *leaching* menggunakan HNO₃ 3 M sebanyak 25 mL. Setelah seluruh kadmium terlepas dari SiO₂@APTES-IIP material tersebut dibilas hingga netral dengan aquades dan dikeringkan pada suhu 80°C. Analisis FTIR, SEM dan EDS dilakukan terhadap SiO₂@APTES-IIP, SiO₂@APTES-NIP dan silika gel untuk mengkonfirmasi keberhasilan fungsionalisasi SiO₂. Pembentukan SiO₂@APTES-NIP dilakukan dengan metode yang sama tanpa adanya penamabahan ion logam kadmium.

Gambar 1. Proses prapolimerisasi APTES dan ion logam Cd(II)

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

Gambar 2. Proses modifikasi SiO₂ oleh APTES dan ion logam Cd(II)

2.3 Optimasi pH

Optimasi ini dilakukan untuk mengetahui pada pH berapa material SiO₂@APTES-IIP dan SiO₂@APTES-NIP memiliki kapasitas retensi maksimum. Proses ini dilakukan dengan cara mengkontakkan 50 mg material SiO₂@APTES-IIP dan SiO₂@APTES-NIP dengan 20 mL larutan Cd(II) 25 ppm pada rentang pH 4; 5; 6; 7; 8 selama 24 jam. Hasil kontak di filtrasi lalu di analisis lebih lanjut menggunakan *Atomic Absorption Spectrophotometry* (AAS) dengan panjang gelombang 228,8 nm.

2.4 Optimasi Waktu Kontak

Waktu yang diperlukan agar logam Cd(II) dapat teretensi ke dalam rongga yang disediakan SiO₂@APTES-IIP perlu dianalisis. Proses ini dilakukan dengan cara mengkontakkan 50 mg material SiO₂@APTES-IIP dan SiO₂@APTES-NIP dengan 20 mL larutan Cd(II) 25 ppm pada kondisi pH terbaik yang didapat dari optimasi sebelumnya dengan rentang waktu waktu 5; 10; 20; 30; 45; 60; 90 dan 120 menit. Hasil kontak di filtrasi lalu di analisis lebih lanjut menggunakan AAS.

2.5 Penentuan Kapasitas Retensi Maksimum

Untuk mengetahui kapasitas adsorpsi maksimum, sebanyak 50 mg SiO₂@APTES-IIP dan SiO₂@APTES-NIP dikontakkan dengan larutan Cd(II) yang memiliki rentang konsentrasi 5 ppm hingga 200 ppm. Filtrat hasil kontak kemudian dianalisis menggunakan AAS. Kapasitas retensi material SiO₂@APTES-IIP dan SiO₂@APTES-NIP dihitung menggunakan persamaan 1.

$$Q = \frac{V(C_i - C_s)}{W} \tag{1}$$

Dimana C_i (ppm) adalah konsentrasi awal larutan ion logam Cd(II), C_s (ppm) adalah konsentrasi akhir larutan ion logam Cd(II), W (mg) adalah berat SiO₂@APTES-IIP dan SiO₂@APTES-NIP dalam miligram dan Q (mg/g) adalah kapasitas retensi material SiO₂@APTES-IIP dan SiO₂@APTES-IIP dan SiO₂@APTES-NIP.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

3. HASIL DAN PEMBAHASAN

3.1. Analisis FTIR

Analisis gugus fungsi menggunakan *fourier-transform infrared spectroscopy* (FTIR) dilakukan untuk mengetahui gugus fungsi apa saja yang terdapat pada material hasil sintesis. Keberadaan gugus fungsi yang khas dapat mengindikasikan keberhasilan proses fungsionalisasi SiO₂ oleh APTES-IIP.

Gambar 3. Spektrum FTIR silika gel dan SiO₂@APTES-IIP hasil sintesis

Spektrum FTIR pada Gambar 3 (warna hitam) menunjukan adanya sinyal pada bilangan gelombang 3448 cm⁻¹ dan 1633 cm⁻¹, sinyal tersebut menunjukkan adanya vibrasi yang berasal dari gugus hidroksi pada permukaan SiO₂. Sinyal pada bilangan gelombang 1101 cm⁻¹ dan 974 cm⁻¹ berasal dari vibrasi Si-O-Si dan Si-O-H. Sedangkan vibrasi dari Si-O menyebabkan munculnya sinyal pada bilangan gelombang 804 cm⁻¹ dan 470 cm⁻¹. Gambar 3(warna merah) merupakan spektrum SiO₂@APTES-IIP. Pada spektrum tersebut terdapat sinyal pada bilangan gelombang 2939 cm⁻¹ dan 1411 cm⁻¹ yang berasal dari vibrasi gugus C-H. Vibrasi gugus N-H dari APTES menyebabkan munculnya sinyal pada 1564 cm⁻¹. Sinyal pada bilangan gelombang ini tidak muncul pada spektrum SiO₂. Chrzanowska pada tahun 2015 telah berhasil melakukan fungsionalisasi silika gel [18]. Pada spektrum FTIR material hasil sintesinya ditemukan puncak karakteristik pada 2938 cm⁻¹ dan 1412 cm⁻¹ untuk gugus C-H, 1564 cm⁻¹ untuk gugus N-H. Jika dibandingkan hasil yang spektrum FTIR material yang dikembangkan pada penelitian ini tidak jauh berbeda dengan material hasil sintesis yang telah dilakukan oleh Chrzanowska. Terdapat perbedaan signifikan antara spektrum FTIR silika gel dan material hasil sintesis. Karakteristik spektrum N-H dan C-H menunjukan proses fungsionalisasi SiO₂ oleh APTES-IIP berhasil dilakukan.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

Gambar 4. Spektrum FTIR SiO₂@APTES-IIP pasca sintesis (biru), SiO₂@APTES-IIP hasil *leaching* (hitam) dan SiO₂@APTES-NIP (merah)

Pada ketiga spektrum yang terdapat pada Gambar 4 bilangan gelombang 1560 cm⁻¹ menunjukkan adanya gugus N-H. Dari hasil perbandingan spektrum FTIR SiO₂@APTES-NIP (warna merah) dan SiO₂@APTES-IIP setelah *leaching* (warna hitam) pada Gambar 4 tidak terdapat perbedaan puncak yang signifikan. Hal ini menandakan bahwa proses *leaching* telah berhasil dilakukan. Keberhasilan proses *leaching* menandakan bahwa tidak ada lagi logam Cd(II) yang terdapat dalam SiO₂@APTES-IIP. Pada spektrum SiO₂@APTES-NIP dan SiO₂@APTES-IIP pasca sintesis terdapat perbedaan intensitas yang signifikan. Hal ini bisa disebabkan karena adanya logam Cd(II) yang terikat pada gugus –NH yang terdapat pada SiO₂@APTES-IIP pasca sintesis sehingga mempengaruhi vibrasinya.

3.2 Karakterisasi Morfologi Material

Morfologi permukaan SiO₂, SiO₂@APTES-IIP paca sintesis dan SiO₂@APTES-NIP dikarakteriasi dengan menggunakan *scanning electron microscope* (SEM). Seperti di tampilkan pada Gambar 5, tidak ada perbedaan signifikan pada permukaan silika gel (5a), SiO₂@APTES-IIP (5b) dan SiO₂@APTES-NIP (5c). Namun keberhasilan proses fungsionalisasi diperkuat dengan adanya data EDS pada Gambar 6 yang menunjukan komposisi SiO₂@APTES-IIP sebelum *leaching* (Gambar 6a) dan SiO₂@APTES-NIP (Gambar 6b). Analisis EDS mengkonfirmasi SiO₂@APTES-IIP dan SiO₂@APTES-NIP mengandung karbon, nitrogen, oksigen dan silka. Namun pada SiO₂@APTES-NIP tidak terdapat logam kadmium. Keberadaan nitrogen, karbon dan kadmium membuktikan fungsionalisasi APTES-IIP pada SiO₂ telah berhasil dilakukan.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

(b)

Gambar 6. Hasil analisis EDS terhadap SiO₂@APTES-IIP (a) SiO₂@APTES-NIP (b)

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

3.3 Optimasi pH

Gambar 7. Kurva optimasi pH

Hasil studi pengaruh pH terhadap kapasitas adsorpsi terhadap Cd^{2+} ditampilkan pada Gambar 7. SiO₂@APTES-NIP digunakan sebagai pembanding. Kapasitas adsorbsi SiO₂@APTES-IIP dan SiO₂@APTES-NIP terhadap Cd^{2+} meningkat seiring dengan bertambahnya pH larutan. Namun kapasitas adsorpsi SiO₂@APTES-NIP tidak sebesar kapasitas adsorpsi SiO₂@APTES-IIP, hal tersebut dikarenakan tidak adanya rongga bercetakan ion pada permukaan SiO₂@APTES-NIP.

pH 7 dipilih sebagai pH optimum karena pada pH tersebut kapasitas adsorpsi SiO₂@APTES-IIP cukup tinggi jika dibandingkan pada konisi pH lainnya. Nilai pKa APTES adalah 7,6 [19]. Ketika pH larutan dibawah nilai pKa APTES gugus amina pada APTES akan terprotonasi menjadi -NH²⁺ [20], hal ini menyebabkan ion logam Cd(II) sulit berikatan koordinasi dengan APTES, maka dari itu nilai kapasitas adsorpsi di bawah pH optimum sangatlah kecil. Pada pH basa nilai kapasitas adsorpsi dari kedua material sangatlah tinggi, hal ini dikarenakan pada kondisi tersebut Cd(II) mengendap menjadi Cd(OH)₂ sehingga konsentrasi akhir ion logam Cd(II) yang terdeteksi oleh AAS sangat kecil sehingga menghasilkan nilai kapasitas adsorpis yang tinggi.

3.4 Optimasi Waktu Kontak

Waktu kontak adalah parameter yang penting untuk mengevaluasi efisiensi adsorben [21]. Pada penentuan waktu kontak nilai kapasitas adsorbsi SiO₂@APTES-IIP dan SiO₂@APTES-NIP dialurkan terhadap rentang waktu 20-120 menit pada pH 7. Waktu 90 menit digunakan sebagai waktu kontak optimum untuk uji kapasitas adsorpsi maksimum. Gambar 8 menunjukan SiO₂@APTES-IIP mencapai adsorpsi maksimum pada menit ke 90 sedangkan SiO₂@APTES-NIP mencapai adsorpsi maksimum pada menit ke 45. Kapasitas adsorbsi SiO₂@APTES-IIP dan SiO₂@APTES-IIP dan SiO₂@APTES-IIP masing-masing sebesar 8,84 mg/g dan 5,04 mg/g.

Gambar 8. Kurva penentuan waktu optimum

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

Waktu kontak dipengaruhi oleh banyaknya rongga pada material yang belum ditempati oleh logam kadmium dan besarnya perbedaan konsentrasi antara material penjerap dan ion kadmium dalam larutan. Kapasitas adsorpsi SiO₂@APTES-IIP lebih besar jika dibandingkan SiO₂@APTES-NIP hal ini disebabkan oleh adanya rongga bercetakan selektif pada SiO₂@APTES-IIP terhadap ion Cd(II) yang memiliki afinitas lebih kuat dibandingkan SiO₂@APTES-NIP. Pada sisa waktu kontak kapasitas adsorpsi kedua material tidak mengalami perubahan yang signifikan. Hal tersebut dikarenakan rongga yang dimiliki oleh SiO₂@APTES-IIP sudah terisi oleh ion logam Cd(II) sehingga tidak dapat berinteraksi dengan ion logam Cd(II) lainnya dalam larutan.

3.5 Kapasitas adsorpsi material

Gambar 9. Kurva penentuan kapasitas adsorpsi maksimum

Gambar 9 menunjukan kapasitas adsorpsi SiO₂@APTES-IIP dan SiO₂@APTES-NIP masingmasing sebesar 7,34 mg/g dan 5,59 mg/g. Kapasitas adsorbsi SiO₂@APTES-IIP dan SiO₂@APTES-NIP meningkat seiring dengan bertambahnya konsentrasi larutan Cd(II). Setelah konsentrasi 100 ppm tidak ada lagi perubahan signifakan dari kapasitas adsorpsi. SiO₂@APTES-IIP dan SiO₂@APTES-NIP. Hal tersebut dikarenakan rongga yang dimiliki oleh SiO₂@APTES-IIP jenuh sehingga tidak dapat menjerap ion logam Cd(II) lainnya yang tersisa dalam larutan. Hasil uji coba kapasitas adsoprsi menunjukkan bahwa kapasitas adsorpsi maksimum SiO₂@APTES-IIP lebih besar dari SiO₂@APTES-NIP.

3.6 Isoterm adsorpsi

Model isoterm adsoprsi dapat ditentukan berdasarkan data kapasitas adsorpsi maksimum dengan metode *batch*. Model Langmuir dan Freundlich digunakan untuk menentukan mekanisme adsorpsi dari SiO₂@APTES-IIP.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

Gambar 11. Kurva linierisasi isoterm Langmuir (a) Kurva linierisasi isoterm Freundlich (b)

Gambar 10 menunjukan nilai kapasitas adsorpsi eksperimen bersinggungan dengan kurva model isoterm Langmuir. Berdasarkan Gambar 11(a) dan Gambar 11(b) nilai R² yang didapat dari linierisasi kurva isoterm Langmuir dan Freundlich bertutur-turut sebesar 0,9989 dan 0,8785. Jika dibandingkan nilai R² model isoterm Langmuir lebih mendekati 1 daripada nilai R² model isoterm Freundlich. Berdasarkan data-data tersebut dapat disimpulkan bahwa adsorpsi yang terjadi mengikuti model isoterm Langmuir. Asumsi dasar dari isoterm Langmuir antara lain: 1) adsorben mempunyai permukaan yang homogen dan hanya dapat mengadsoprsi satu molekul adsorbat untuk setiap sisi aktif adsorbennya. Tidak ada interaksi antara molekul-molekul yang terserap. 2) Semua proses adsorpsi terjadi dengan mekanisme yang sama dan 3) Hanya terbentuk satu lapisan tunggal (monolayer) saat adsoprsi maksimum [22]. Tabel 1. menunjukan isoterm adsorpsi untuk polimer bercetakan ion kadmium pada penelitian-penelitian terdahulu.

TABLE I. Perbandingan Jenis material ternadap adsorpsi fon cadinium (II)	TABEL I. Perbanding	an jenis material	terhadap adsorpsi	ion cadmium (II)
--	---------------------	-------------------	-------------------	------------------

Jenis polimer bercetakan ion	Q _{max} (mg/g)	Isoterm Adsorpsi	Referensi
Cd ²⁺ -IIPs disintesis melalui teknik	62.9 mg/g	Langmuir	[10]
presipitasi dengan 1-			
merkaptooktana yang befungsi			
sebgai ligan dan MAA berfungsi			
sebagi monomer fungsional			
Adsorben mesopori	122 mg/g	Langmuir	[23]
terfungsionalisasi amino dengan			
cetakan Cd(II) dan misel surfaktan			
Polimer bercetakan ion magnetik	111 mg/g	Langmuir	[24]
yang dibuat menggunakan SBA-15			
sebagai monomer, etilen glikol			
sebagai crosslinker,			
difenilkarbazida sebagai ligan dan			
$Cd^{2+}, Cu^{2+}, dan Ni^{2+}$ sebagai ion			
pencetak			

4. KESIMPULAN

Sintesis SiO₂@APTES-IIP dilakukan untuk menjerap logam kadmium yang merupakan salah satu logam berbahaya larut air yang dapat masuk kedalam rantai makanan manusia. Keberhasilan sintesis dievaluasi menggunakan spektroskopi infra merah, SEM dan EDS. Perbandingan nilai kapasitas retensi antara SiO₂@APTES-IIP dengan SiO₂@APTES-NIP yang dikontakkan pada pH 7

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the CC BY-SA 4.0 Lisence.

dengan waktu kontak 90 menit berturut-turut adalah 7,34 mg/g dan 5,59 mg/g. Karakterisasi sisi ikatan dipelajari melalui model isoterm Langmuir dan Freundlich. Hasil analisis menunjukkan bahwa, model isoterm adsorpsi mengikuti model isoterm adsorpsi Langmuir.

Ucapan Terima Kasih

Ucapan terima kasih kepada Laboratorium Kimia Analitik ITB yang telah mendukung dilakukannya penelitian ini.

Daftar Pustaka

- [1] N. K. Kortey, M. E. Heymann, E. K. Essuman, F. M. Kpodo, P.T Akonor, S. Y. Lokpo, N. O. Boadi, M. A. Akonor and C. Tettey, "Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety," *Toxicology Reports.*, vol. 7, pp. 360-369, 2020.
- [2] J. L. Young and L. Cai, "Implications for prenatal cadmium exposure and adverse health outcomes in adulthood," *Toxicology and Applied Pharmacology.*, vol. 403, 115161, 2020.
- [3] L. Huang, Q. Wang, L. Ma, Y. Wu, Q. Liu, S. Wang, Y. Feng, "Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis," *Environmental Pollution..*, vol. 264, 114677, 2020.
- [4] A. R. Ishak, M. S. M. Zuhdi, M.Y. Aziz, "Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur," *The Egyptian Journal of Aquatic Research.*, vol. 46, pp. 221-225, 2020.
- [5] D. E. Sari, L. N. Ismi, I. Sugoro, "Heavy metal contamination of Ciliwung River, Indonesia," *Ecology & Safety.*, vol. 13, pp. 106-111, 2019.
- [6] R. E. Morsi, A. M. Al-Sabagh, Y. M. Moustafa, S. G. El-Kholy and M. S. Sayed, "Polythiophene modified chitosan/magnetite nanocomposites for heavy metals and selective mercury removal," *Egyptian Journal of Petroleum.*, vol. 27, pp. 1077-1085, 2018.
- [7] H. Wang, Y. Lin, Y. Li, A. Dolgormaa, H. Fang, L. Guo, J. Huang, and J. Yang, "A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution," *Journal of Inorganic and Organometallic Polymers and Materials.*, vol. 29, pp. 1874-1885, 2019.
- [8] Sharma, G., Kandasubramanian, B. (2020) : Molecularly Imprinted Polymers for Selective Recognition and Extraction of Heavy Metal Ions and Toxic Dyes, *Journal of Chemical and Engineering Data*, 65, 396-418.
- [9] D. K. Singh and S. Mishra, "Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer," *Journal of Hazardous Materials.*, vol. 164, pp. 1547-1551, 2009.
- [10] O. Erdem, Y. Saylan, M. Andac and A. Denizil, "Molecularly Imprinted Polymers for Removal of Metal Ions: An Alternative Treatment Method," *Biomimetics.*, vol 3(4), pp. 38, 2018.
- [11] M. Gawin, J. Knefal, B. Trzewik, S. Walas, A. Tobiasz, H. Mroweic and E. Eitek, "Preparation of a New Cd(II)-Imprinted Polymer and Its Application to Determination of Cadmium(II) Via Flow-Injection-Flame Atomic Absorption Spectrometry," *Talanta.*, vol. 80, pp. 1305-1310, 2010.
- [12] C. Xie, S. Wei, D. Chen, W. Lan, Z. Yan, Z. Wang, "Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(II) adsorption and detection," *RSC Advances.*, vol. 9, pp. 23474-23483, 2019.
- [13] M. S. Jagirani, A. Balouch, S. A. Mahesar, A. Kumar, A. R. Baloch and M. I. Bhanger, "Fabrication of cadmium tagged novel ion imprinted polymer for detoxification of the toxic Cd²⁺ ion from aqueous environment," *Microchemical Journal.*, vol 158, 105247, 2020.
- [14] C. Xie, X. Huang, S. Wei, C. Xiao, J. Cao, and Z. Wang, "Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd²⁺ and Pb²⁺ in soil and food," *Journal of Cleaner Production.*, vol. 262, 121387, 2020.
- [15] M. M. Moein, A. A. R Mohamed and A. Rehim, "Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation," *Molecules.*, vol.24, 2889, 2019.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.

- [16] Buhani, Narsito and N. E. S. Kunarti, "Production of metal ion imprinted polymer from mercapto silica through sol – gel process as selective adsorbent of cadmium," *Desalination.*, vol. 251(1-2), pp. 83-89, 2010.
- [17] D. L. Ramasamy, A. Wojtus, E. Repo, S. Kalliola, V. Srivastava, M. Sillanapaa, "Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: Assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan," *Chemical Engineering Journal*, vol 330, pp. 1370-1379, 2017.
- [18] A. M. Chrzanowska, A. Poliwoda, P. P. Wieczore, "Surface molecularly imprinted silica for selective solid-phase extraction of biochanin A, daidzein and genistein from urine samples," *Journal of Chromatography.*, vol.1392, pp. 1-9, 2015
- [19] R. Bhat and J. Genzer, "Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates," *Nanotechnology.*, vol. 18, 025301, 2006.
- [20] Z. M Idris, B. H. Hameed, L.Ye, S. Hajizadeh, B. Mattiasson, A. T.M. Din, "Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption," *Journal of Environmental Chemical Engineering.*, vol. 8, 103981, 2020
- [21] Y. Xi, Y. Luo, J. Luo and X. Luo, "Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers," *Journal of Chemical & Engineering Data.*, vol. 60, pp. 3253-3261, 2015.
- [22] I. Langmuir, "The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids," Journal of American Chemical Society., vol. 38 (11), pp. 2221–2295, 1916.
- [23] Y. S. Minaberry and M. Tudino, "An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS," *Analytical Methods*, vol 10, pp. 5305, 2018.
- [24] H. Faghihian and Z. Adibmehr, "Comparative performance of novel magnetic ion-imprinted adsorbents employed for Cd²⁺, Cu²⁺ and Ni²⁺ removal from aqueous solutions." *Environmental Science and Pollution Research*, vol 25, pp. 15068–15079, 2018.

Copyright © 2021 by Authors, published by Indonesian Journal of Chemical Analysis (IJCA), ISSN 2622-7401, e ISSN 2622-7126. This is an open-access articles distributed under the <u>CC BY-SA 4.0 Lisence</u>.