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 The analysis of polar herbicides by liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) is challenging due to their 
complicated interactions. Diquat and paraquat, the bipyridilium 
group of polar herbicides, are widely used worldwide. This study 
aimed to optimize analytical conditions of diquat and paraquat in 
rice matrix using a hydrophilic interaction liquid chromatography 
column (Obelisc R; 2.1 x 150 mm, 5 µm). The mixtures of 
acetonitrile and ammonium formate buffer in water were used as 
mobile phase. All buffer solutions were acidified to a pH of 2.5 
using concentrated formic acid. The results showed that 10 mM 
buffer concentration of ammonium formate was optimal compared 
to others, including 5, 20, and 50 mM. A mixture of methanol and 
water (6:4, v/v) containing 1% formic acid was used as an 
extractable solvent for sample preparation. Method quantitation 
limit (MQL) of diquat and paraquat in rice samples was 10 µg/kg. 
Recoveries at different concentrations (i.e., 20, 50, and 100 µg/kg) 
were higher than 70% for diquat, and 80% for paraquat with RSD 
< 20%, respectively. Diquat and paraquat in rice samples 
purchased from the local market were lower than MQL, with good 
recoveries for standard spiked samples. 

1. INTRODUCTION 
Diquat (1.1’-ethylene-2,2’- bipyridinium ion) and paraquat (1,1’-dimethyl-4,4’-bipyridinium 

ion) are fast-acting and non-selective contact quaternary ammonium herbicides [1, 2]. They are 
highly polar compounds, which have permanent ionic character and high hydrophilicity. Log Kow of 
diquat and paraquat are -4.5 and -3.05, respectively [3]. Due to their polar properties, diquat and 
paraquat are not retained on the reverse-phase chromatographic column. Currently, there are two 
ways to determine diquat and paraquat using Liquid Chromatography-tandem Mass Spectrometry 
(LC-MS/MS), including i) using an agent to pair with diquat and paraquat (ion-pairing technique), 
which is used commonly to analyze ionic compounds [4, 5]. For the ion-pairing technique, diquat 
and paraquat can pair with many agents. However, when using the liquid chromatography 
electrospray ionization tandem mass spectrometry (LC-ESI-MS), the reagents must be volatile 
compounds such as heptafluorobutyric acid (HFBA), pentafluoropropionic acid (PFPA), or 
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trifluoroacetic acid (TFA) [6]. There are two major disadvantages to the ion-pairing technique. 
Firstly, the LC-MS/MS system can be contaminated by the pairing reagents that change the 
selectivity on the stationary phase surface of the column, causing “baseline increasing” [7]. Secondly, 
it causes signal 'suppression' in MS, resulting in low sensitivity [7, 8]; ii) direct analysis of diquat 
and paraquat without ion-pairing by using hydrophilic interaction liquid chromatography (HILIC) 
column [7, 9]. In recent years, scientists have been interested in HILIC due to its widely applications 
in pharmaceuticals, biology, medicine, environment, food, etc. [10]. It is increasingly being used for 
the analysis of highly polar, hydrophilic compounds [11]. There are many types of HILIC columns 
with different stationary phase structures developed. Due to two positive charges in the structural 
formula of diquat and paraquat, the surface of the stationary phase is negatively charged and/or 
containing a zwitterion has special features that will retain these compounds, i.e., simultaneous 
analysis of cationic, anionic, and neutral compounds. One of the zwitterionic HILIC columns 
commonly used to analyze diquat and paraquat is ZIC-HILIC [7] or Obelisc R [12]. Multi-
mechanical retention extends the applications of those columns. However, that causes many 
difficulties in method development because of its complexity. Therefore, direct analysis overcomes 
the disadvantages of the previous ion-pairing technique should be paid more attention. In different 
cultivation stages, to improve rice production yield, herbicides are used increasingly day by day, 
especially diquat and paraquat. They must be controlled and monitored because of their negative 
effects on human health and environments. According to European Union, the maximum residue 
limits (MRLs) for diquat and paraquat requested in rice were at 0.02 and 0.05 mg/kg, respectively 
[13]. Due to the increasingly strict regulations of rice importing countries as well as ensuring the 
safety of consumer health, the analytical issue for the trace content of paraquat and diquat in rice 
needs more attention by the analyst and manager.    

The present study aimed to optimize essential parameters for diquat and paraquat analysis 
without ion-pairing using hydrophilic interaction liquid chromatography column (Obelisc R; 2.1 x 
150mm, 5µm) tandem mass spectrometry on Thermo Scientific TSQ Quantiva LC-MS. Then, the 
method was applied to analyze diquat and paraquat in rice samples (the staple food for more than 
haft of the world's population) [14]. Rice samples were chosen because their consumption in recent 
decades has increased dramatically [15]. The sample preparation method in this study was based on 
the method of quick polar pesticides (QuPPe) of the European Union Reference Laboratory for 
Pesticides Requiring Single Residue Methods [14] to analyze rice samples from local markets. 

2. METHOD 
2.1 Chemicals and equipment 

A stock solution of 1000 mg/L (99%) of diquat dibromide and paraquat dichloride in water, 
packed 1 mL in ampules, was purchased from Restek. Acetonitrile (LC-MS grade, 99.9%), methanol 
(LC-MS grade, 99.9%), and formic acid (analytical grade, 99%) were purchased from Merck. 
Ammonium formate (98%) was acquired from Fluka. Primary secondary amine (PSA) – 40 μm and 
octadecyl (C18) – 40 μm were supplied from Agilent. A system of UPLC-MS/MS was used, 
including a Vanquish™ UPLC (ultra-performance liquid chromatography) coupled to a TSQ-
Quantiva triple quadrupole mass spectrometer (Thermo, USA). 

2.2 Preparation of chemicals 

Standard solutions  
A standard solution of 100 mg/L of diquat and paraquat, stability up to 24 months, was 

prepared by diluting 1 mL of stock solution 1000 mg/L into 10 mL using deionized water. A standard 
solution of 1 mg/L of diquat and paraquat was obtained by diluting the standard solution 100 mg/L 
in methanol containing 1% formic acid that was stable for at least one month.  

The working standard solutions at various concentrations of 1, 5, 10, 25, 50, 100, and 200 µg/L 
were prepared by diluting standard solution 1 mg/L in a methanol-water mixture (6:4, v/v) containing 
1% formic acid, respectively. These solutions were prepared freshly before the analysis. We noted 
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that all standard solutions were stored in polypropylene bottles or plastic vials and put in the fridge 
at 4oC. All solutions were taken out from the refrigerator and reached room temperature before use. 

 
Mobile phases 

The LC mobile phase involving two elute solvents were i) buffer solutions of formic 
acid/ammonium formate at different concentrations in water (solvent A) and ii) acetonitrile (LC-MS 
grade, 99.9%) (solvent B). For solvent A, different buffer concentrations of formic acid/ammonium 
formate solution were investigated at levels of 5, 10, 20, and 50 mM. To prepare those solutions, we 
weighed 0.315 g, 0.63 g, 1.26 g, and 3.15 g of ammonium formate corresponding to the buffer 
concentration of 5, 10, 20, and 50 mM, into the beakers of 1000 mL, respectively. The deionized 
water was added up to two-third of the beaker volume and stirred. Concentrated formic acid was 
slowly added to reach desired pH (i.e., pH values of buffer solutions were selected for investigation, 
including 2.5, 3.0, and 5.0). Then, the solutions were transferred into a volumetric flask and adjusted 
to the mark of 1000 mL using deionized water. 

2.3 Optimization of UPLC-MS/MS 
A standard solution of 1 mg/L in MeOH was directly injected into the system. The injection 

volume was 5 μL. The column temperature was set at 40 °C. The flow rate of gradient elution was 
performed at 0.4 mL/min. Mass spectrometry optimized parameters were presented in Table 1. The 
chromatographic separation of diquat and paraquat was accomplished on an Obelisc R column (150 
× 2.1 mm, 5 μm) with the stationary phase and interaction described in Figure 1, provided from 
SIELC Technologies (USA).  

Standard solutions of 10 µg/L were injected in triplicate on UPLC-MS/MS to select the 
optimized buffer concentration and pH of solvent A, respectively. The injection volume was 5 μL 
for each one. We noted that the pH values were investigated at 2.5, 3.0, and 5.0 based only on 
previously optimized buffer concentrations. The gradient elutions are exhibited in Figure 2. 

 
Figure 1. The stationary phase structure and interaction mechanism on Obelisc R column adapted 

from SIELC [16]. 
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TABLE I. Optimized parameters of mass spectrometry 

Ion Source Master Scan 
Ion Source Type H-ESI Use Cycle Time    TRUE 
Spray Voltage Static Cycle Time (s) 1 
Positive Ion (V)  3500 Q1 Resolution (FWHM) 0.7 
Negative Ion (V)    2500 Q3 Resolution (FWHM) 0.7 
Sheath Gas (Arb)  45 CID Gas (mTorr) 2 
Aux Gas (Arb) 13 Chrom Filter (sec)  3 
Sweep Gas (Arb)  1 Display Retention Time TRUE 
Ion Transfer Tube Temp (°C)   350 Use Calibrated RF Lens FALSE 
Vaporizer Temp (°C)    350 Display Retention Time TRUE 

 

 

Figure 2. The diagram of gradient elution: buffer solutions of formic acid/ammonium formate at 
different concentrations in water (solvent A) and ACN-acetonitrile (solvent B).  

2.4 Method validation 

Calibration curves, linearity, and matrix effects 
The linearity of analytical curves and matrix effects were determined through injections of the 

standard solutions at concentrations of 1, 5, 10, 25, 50, 100, and 200 µg/L in the mixture of methanol: 
water (6:4 = v/v) and rice sample with free diquat and paraquat, respectively. 

Estimation of method quantitation limit (MQL) 
According to SANTE/11813/2017, MQL is the lowest standard spiked concentration which 

the analytical method can quantify at levels of repeatability (RSDr), reproducibility (RSDR) less than 
20%, recovery between 70 and 120%. For this standard, estimation of method detection limit (MDL) 
is not mentioned. Thus, in the present study, the formula MDL=3/10 MQL was applied to calculate 
MDL. Twenty rice samples were spiked at the concentration of 10 µg/kg to determine the MQL of 
diquat and paraquat. We noted that the samples were investigated on two different days, carrying out 
10 samples per day. The recoveries of diquat and paraquat were calculated based on a calibration 
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curve in the solvent. Results of 10 samples on the same day and 20 samples in two days were used 
to determine RSDr and RSDR, respectively.  

Recovery, repeatability, and reproducibility 
The repeatability, reproducibility, and recovery efficiency of diquat and paraquat were 

acquired via standard solutions spiked at three levels of 20, 50, and 100 µg/kg into rice samples with 
free diquat and paraquat. Each investigated concentration was carried out 12 times of repeatability 
per rice sample on two different days (i.e., 6 samples per day). The recovery of 6 samples on the 
same day and the 12 samples on two different days were used to determine RSDr and RSDR, 
respectively. 

2.5 Sample preparation for diquat and paraquat in rice samples 
Five rice samples were gathered from local markets (Ho Chi Minh City, Viet Nam) and were 

homogenized using a mill. The rice sample preparations were carried out based on the QuPPe method 
that the European Union Reference Laboratory developed for Pesticides Requiring Single Residue 
Methods [17]. Briefly, 2 g of rice was weighed in triplicates into 50 mL plastic centrifuge tubes with 
screw caps, 10 mL mixture of methanol: water (6:4 = v/v) containing 1% formic acid was added to 
each tube. These samples were vortexed for 10 seconds and sonicated for 15 minutes at room 
temperature. The samples were centrifuged for 3 minutes at 9000 rpm. Then, 6 mL of raw extracts 
were transferred into 15 mL plastic centrifuge tubes containing sorbent material (150 mg PSA) to 
remove the matrix. The cleaning process was performed by vortexing the tubes for 30 seconds and 
centrifuging for 3 minutes at 9000 rpm. The cleaned extracts were filtered through a 0.22 μm nylon 
filter into a polypropylene autosampler vial prior to analysis. For the not detected sample of diquat 
and paraquat, a standard solution of 100 µg/kg was spiked in triplicates and performed according to 
the above process to evaluate the accuracy of the method. 

3. RESULT AND DISCUSSION 
3.1. Quantitative and qualitative ions of diquat and paraquat 

The triple quadrupole mass spectrometer on the system of UPLC-MS/MS in the present study 
was acquired in the positive electrospray ionization mode (ESI+). The optimized voltages of collision 
energy (CE) and radio frequency (RF) lens are presented in Table 2. Two transitions per analyte were 
monitored in the multiple reaction monitoring (MRM) mode for diquat (183.12 → 157.0 for 
quantification; 183.12→ 167.9 for confirmation) and paraquat (186.33 → 170.9 for quantification; 
171.12 → 155.1 for confirmation). It can be seen that precursor ions of diquat have the fragmentation 
mechanism was [M2+] → [M●+]. For paraquat, mass 186.33 has the fragmentation mechanism similar 
to precursor ions of diquat, as for mass 171.12 was formed by the mechanism [M2+]→[M+-CH3] [18] 
(Figure 3). After the precursor ions pass through the first quadrupole to the second, they were 
fragmented to form daughter ions. For paraquat, two precursor ions with m/z of 186.33 and 171.12 
lose one -CH4 group to create two fragments with m/z of 170.9 and 155.1 [3]. Unlike paraquat, the 
daughter ion of diquat has the m/z of 157.0, which was formed by [Diquat●+] breaking an -HCN 
group in the aromatic ring [3], as for the m/z of 167.9 was formed by [Diquat●+] losing a group of -
CH4. 

TABLE II. Optimized collision energy (CE) and radio frequency (RF) lens voltages for qualitative 
and quantitative ions of diquat and paraquat 

Compounds Precusor ion (m/z) Product ion (m/z) CE (V) RF lens (V) 
Diquat 183.12 157.0* 22.2 79 

183.12 167.9 28.6 79 
 

Paraquat 186.33 170.9* 19.6 56 
171.12 155.1 29.8 146 
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(*) m/z for quantification. 
 

 
Figure 3. Fragmentation mechanism of paraquat in the ionization chamber. 

3.2. Influence of mobile phase characteristics on chromatographic separation of diquat and 
paraquat 

3.2.1. Effect of buffer concentration in solvent A 

The variabilities of retention time (Tr), peak width (W), and tailing factor (Ftailing) of diquat and 
paraquat affected by different buffer concentrations are exhibited in Table 3 The diquat and paraquat 
retention times increased from 0.4 minutes and 0.5 minutes, respectively, as the buffer concentrations 
increased from 5 mM to 50 mM. This result is attributed to an increase in the buffer concentration 
that reduced the electrostatic interaction of the charged analyte on the zwitterion column. Diquat and 
paraquat retained on the column are affected by the simultaneous of two types of interactions, 
including i) the attractive interaction with the anion group outside the active layer and the repulsive 
interaction with the cation group inside; ii) increasing of the salt concentration can reduce both types 
of interactions, but the main effect was still to reduce electrostatic repulsion so that the analytes were 
better retained on the column [19]. Besides, Table 3 also exhibits that the chromatographic peak 
shape improved with the higher buffer concentration expressed through the decrease in peak width 
and Ftailing of analytes. We suggest that increasing the buffer concentrations can decrease secondary 
interactions, thereby improving the peak shape [20]. However, the buffer concentration is too high, 
the sensitivity of the signal will be affected by that expressed through the peak area. The peak areas 
of paraquat and diquat at different buffer concentrations are shown in Figure 4. The sensitivity of 
paraquat and diquat decreased when the buffer concentration increased from 5 to 50 mM. The cause 
can be due to the suppression in MS, the paraquat and diquat could be completed by the presence of 
overwhelming amounts of other ions before entering the quadrupole. In addition, Figure 4 also 
showed the standard deviation in peak area of repeated injections at a buffer concentration of 5 mM 
was more extensive than other concentrations. We suggest that the buffer concentration of 5 mM was 
too small, forming a weak buffer capacity. It was not enough to stabilize the mobile phase pH, leading 
to the neutralization of the anion group on the unfavorable column that causing the analyte not to be 
entirely eluted from the chromatography column and would be further eluted in the next injection. 
That made the posterior injection area higher than the previous injection, leading to non-repeating 
peak areas between injections. Therefore, based on the obtained results, 10 mM was chosen as the 
optimal buffer concentration due to the best stability, the satisfy the sensitivity requirement, and the 
acceptable peak shape. 
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TABLE III. Retention time (Tr), peak width (W), tailing factor (Ftailing), and resolution (Rs) of 
diquat and paraquat in the influence of different buffer concentrations 

Concentrations of ammonium formate buffer 
at pH=2.5 

Parameters Diquat Paraquat 

5 mM Tr (mins) 5.21 5.17 
W (mins) 1.10 0.80 

Ftailing 5.50 2.66 
Rs 0.04 

    

10 mM Tr (mins) 5.21 5.20 
W (mins) 0.35 0.35 

Ftailing 1.75 1.75 
Rs 0.03 

    

20 mM 
 

Tr (mins) 5.43 5.45 
W (mins) 0.35 0.35 

Ftailing 1.50 1.75 
Rs 0.06 

    

50 mM Tr (mins) 5.61 5.67 
W (mins) 0.35 0.35 

Ftailing 1.50 1.40 
Rs 0.17 

 
Figure 4. Peak area of diquat and paraquat at different buffer concentrations. 

3.2.2. Effect of buffer pH 
The peak width (W) and Ftailing of diquat and paraquat at pH = 3 were more extensive than at 

pH = 2.5 (Table 4). The reason could be that incomplete neutralization in the column leads to some 
molecules of the paraquat and diquat remaining on the column, causing tailing and band broadening 
peaks. At a buffer pH of 2.5, the anion group on the active layer exists almost entirely in a neutral 
form, thereby helping to elute these analytes better and improve the peak shape. Besides the presented 
influencing factors, buffer pH also affects MS and changes the sensitivity of the analytes. 
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Consequently, the appearance of the chromatographic peak of diquat and paraquat at pH = 5 was not 
found. The reason may be that this pH range was not enough for the negatively charged group on the 
column's active layer to existing completely in neutral form. Figure 5 shows that the peak area of the 
paraquat was higher at pH = 2.5. The cause can be that adding a volatile acid such as formic acid to 
adjust the pH makes the solvent's volatility, resulting in better ionization efficiency. In the ESI 
source, the ionization efficiency may or may not be related to pH depending on the different 
physicochemical properties of the analytes [21]. That was the reason the sensitivity of paraquat was 
affected, and diquat was not when changing buffer pH. From the obtained results, the appropriate 
buffer pH in solvent A was 2.5 because it gave the peak shape closest to the Gaussian peak and the 
higher sensitivity for paraquat.  

TABLE IV. Retention time (Tr), peak width (W), tailing factor (Ftailing), and resolution (Rs) of 
diquat and paraquat in different buffer pHs 

pH of 10 mM 
ammonium formate 
buffer (solvent A) 

Parameter Diquat Paraquat 

pH=2.5 Tr (mins) 5.18 5.17 
W (mins) 0.35 0.35 

Ftailing 1.75 1.75 
Rs 0.03 

    

pH=3 Tr (mins) 5.15 5.13 
W (mins) 0.40 0.45 

Ftailing 2.00 2.25 
Rs 0.05 

    

pH=5 No chromatographic peak 

 
Figure 5. Peak area of diquat and paraquat at different buffer pH. 

3.2.3. Effect of gradient elutions 
The specifics of the chromatographic peak of diquat and paraquat at different gradient elutions 

are presented in Table 5. The analytes were eluted from the column relatively quickly, simultaneously 
the tailing and band broadening peak paraquat. For the purpose of correcting the quick elution, 
gradient 2 was constructed by reducing the buffer percentage at an initial stage. The results obtained 
were more favorable in retention time, but the peak of the paraquat and diquat were still broader and 
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more tailing due to being held for a long time on the column. Realizing that the peak shape of 
paraquat and diquat was insufficient because the highest percentage of the buffer solution used was 
not strong enough for elution, increasing the buffer percentage from 80% to 90% was applied. With 
a gradient 3, the results were much improved, with the width and tail peak significantly reduced. In 
addition to the factors of retention time and peak shape for a gradient to be considered optimal, the 
equilibration time of the column after the analyte is eluted very importantly. For HILIC, columns 
need to have an equilibration time of about 20 times the column volume, specifically in this case ~16 
minutes. The final compound comes out of the column at about 5 min; hence the end time of gradient 
elution at 20 minutes was reasonable. As the above results, gradient 3 was selected as the optimal 
elution gradient. 

TABLE V. Retention time (Tr), peak width (W), tailing factor (Ftailing), and resolution (Rs) of diquat 
and paraquat in different gradient. elutions 

Gradient elutions Parameters Diquat Paraquat 
Gradient 1 Tr (mins) 3.93 3.89 

W (mins) 0.35 0.45 
Ftailing 1.75 2.25 

Rs 0.10 
    

Gradient 2 Tr (mins) 4.79 4.72 
W (mins) 0.40 0.60 

Ftailing 2.00 2.00 
Rs 0.14 

    

Gradient 3 Tr (mins) 5.21 5.18 
W (mins) 0.35 0.35 

Ftailing 1.75 1.75 
Rs 0.08 

3.3. Method validation for analysis of diquat and paraquat 
The calibration curves of diquat and paraquat are shown in Figure 6. The linear range and 

correlation coefficient were 1-50 µg/L, 0.9997 for diquat, and 1-200 µg/L, 0.9998 for paraquat, 
respectively. The large linear ranges of diquat and paraquat allow the analysis of samples at various 
concentrations without sample dilution or enrichment. The results of the study showed that the matrix 
effect of diquat and paraquat alternate -5.1 % and -4.2 %, which prove to have no significant matrix 
effects. Equation 1 was used to calculate the matrix effect. 

𝑀𝐸 =
𝑎! − 𝑎
𝑎

∗ 100																																																																																																																																					(1) 

Where, 
ME: matrix effect (%) 
a’: the slope of calibration curve or peak area of analytes in rice matrix  
a: the slope of calibration curve or peak area of analytes in a mixture of methanol: water (6:4 = v/v) 
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Figure 6. Standard curve in methanol: water mixture (6:4 = v/v) containing 1% formic acid) of (a) 
diquat and (b) paraquat. 

The recoveries (Rec) of diquat and paraquat at the standard spiked concentration of 10 µg/kg 

were more than 70% for diquat and 88 % for paraquat, respectively, with repeatabilities (RSDr), 
reproducibilities (RSDR) < 15% (Table 6), satisfied the criteria of SANTE/11813/2017. It can be 
concluded that the MQL of diquat and paraquat was 10 µg/kg, which is less than the maximum 
residue limits (MRL) specified by the EU for rice matrices. From MQL, the calculated MDL of those 
analytes was 3 μg/kg.  

TABLE VI. The recoveries (% R), repeatabilities (RSDr), reproducibilities (RSDR) of diquat and 
paraquat at the spiked concentration of 10 µg/kg 

Parameters Diquat (10 μg/kg) Paraquat (10 μg/kg) 
% R 71.72 88.33 
RSDr (%) 6.41 11.22 
RSDR (%) 7.83 11.24 

The recoveries (Rec), repeatability (RSDr), and reproducibility (RSDR) of standard spiked 
concentrations are shown in Table 7. These results satisfy SANTE/11813/2017 (% H: 70-120%; 
RSDr, RSDR < 20%). We conclude that the method can be applied to analyze diquat and paraquat at 
various concentrations in rice.  

TABLE VII. The recoveries (% R), repeatabilities (RSDr), reproducibilities (RSDR) of diquat and 
paraquat at spiked concentrations of 20, 50, and 100 µg/kg 

Spiked standard concentrations Parameters Diquat Paraquat 

20 µg/kg 
% R 71.84 79.01 

RSDr (%) 7.72 1.71 
RSDR (%) 8.60 6.84 

    

50 µg/kg 
% R 72.70 80.85 

RSDr (%) 4.02 1.03 
RSDR (%) 4.31 1.41 

    

100 µg/kg 
% R 70.31 81.53 

RSDr (%) 1.04 4.03 
RSDR (%) 1.65 3.20 
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3.4. Analysis of paraquat and diquat in rice from local markets 
The paraquat and diquat concentrations in selected rice samples were lower than MQL (i.e., 

10 µg/kg). The recovery and RSDr were described in Table 8. Those values satisfied the 
SANTE/11813/2017. It proved that the results were not a false negative. 

TABLE VIII. The recoveries (% R) and RSD (%) of diquat and paraquat in rice samples 

Samples Diquat (100 µg/kg) Paraquat (100 µg/kg) 
% R RSDr (%) % R RSDr (%) 

Sample 1 70.83 ± 3.96 5.62 81.70 ± 2.21 2.74 
Sample 2 72.51 ± 2.25 3.13 83.94 ± 6.63 7.90 
Sample 3 71.11 ± 4.83 6.80 85.51 ± 7.18 8.44 
Sample 4 70.34 ± 5.06 7.21 82.65 ± 4.96 6.01 
Sample 5 71.60 ± 3.51 4.93 80.42 ± 6.03 7.54 

 

4. CONCLUSION  

The conditions of chromatographic separation using HILIC Obelisc R column on UPLC-
MS/MS were optimized to analyze directly polar herbicides containing quaternary ammonium group 
typical diquat, paraquat in rice samples. The results showed that 10 mM buffer concentration of 
ammonium formate at pH = 2.5 was the optimal condition for diquat and paraquat chromatographic 
separation on the UPLC-MS/MS. The method validation showed that the recoveries of diquat and 
paraquat were within the allowable range from 70 to 120%, with RSDR and RSDR being less than 
20% at the concentration ranges from 10 to 100 µg/kg. The MQL of the investigated analytes was 
10 µg/kg, and this MQL was less than MRL according to EU regulations for rice. The developed 
method can be further applied to analyze diquat and paraquat in different rice samples. In addition, 
the combination with a quick, simple, and effective rice sample preparation based on the QuPPe 
method creates a premise to analyze other polar compounds in rice such as diminazene, 
isometamidium. 
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