Main Article Content


Financial Technology (Fintech) has become an essential issue in the past few years, especially for the companies that offer the products/services that require payment. This research explores the factors which drive companies to adopt fintech - risk perception, cost perception, organizational readiness, top management support, knowledge of information technology, customer pressure, and competitive pressure - and the benefits of its adoption. This research distributed questionnaires using purposive sampling method to the employees working in the companies adopting Fintech. There were 195 questionnaires analyzed using SEM-PLS. This research indicates that customer pressure, competitive pressure, organizational readiness, top management support, and knowledge of information technology have significant influences on Fintech adoption. However, risk perception and cost perception do not significantly affect Fintech adoption. Fintech adoption has a significant effect on organizational benefits. Companies can use this research to find the opportunities and risks when they adopt fintech in order to improve on innovating and maximize customers and partners’ satisfactions.


Financial Technology Adoption Net Benefits

Article Details


  1. Alsaad, A., Mohamad, R., & Ismail, N. A. (2017). The moderating role of trust in business to business electronic commerce (B2B EC) adoption. Computers in Human Behavior, 68, 157–169.
  2. Alshamaila, Y., Papagiannidis, S., & Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250–275.
  3. AlSharji, A., Ahmad, S. Z., & Abu Bakar, A. R. (2018). Understanding social media adoption in SMEs: Empirical evidence from the United Arab Emirates. Journal of Entrepreneurship in Emerging Economies, 10(2), 302–328.
  4. Anggreni, N. M. M., Ariyanto, D., Suprasto, H. B., & Dwirandra, A. A. N. B. (2020). Successful adoption of the village’s financial system. Accounting, 6(6), 1129–1138.
  5. Awa, H. O., Ojiabo, O. U., & Orokor, L. E. (2017). Integrated technology-organization-environment (T-O-E) taxonomies for technology adoption. Journal of Enterprise Information Management, 30(6), 893–921.
  6. Bagozzi, R. P., & Youjae Yi. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16(1), 74–94.
  7. Bank Indonesia. (2021). Statistik Sistem Pembayaran dan Infrastruktur Pasar Keuangan (SPIP). Retrieved June 10, 2022, from
  8. Brown, I., & Russell, J. (2007). Radio frequency identification technology: An exploratory study on adoption in the South African retail sector. International Journal of Information Management, 27(4), 250–265.
  9. Chana, F. T. S., & Chong, A. Y. L. (2013). Determinants of mobile supply chain management system diffusion: A structural equation analysis of manufacturing firms. International Journal of Production Research, 51(4), 1196–1213.
  10. Chandra, S., & Kumar, K. N. (2018). Exploring factors influencing organizational adoption of augmented reality in e-commerce: Empirical analysis using technology-organization-environment model. Journal of Electronic Commerce Research, 19(3), 237–265.
  11. Chen, J. V., Jubilado, R. J. M., Capistrano, E. P. S., & Yen, D. C. (2015). Factors affecting online tax filing - An application of the IS Success Model and trust theory. Computers in Human Behavior, 43, 251–262.
  12. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (Second Edi). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.
  13. Cohen, J. (1992). A Power Primer. Phychological Bulletin, 112(1), 155–159.
  14. DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success : A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30.
  15. Financial Stability Board. (2017). Financial stability Implications from FinTech: Supervisory and Regulatory Issues that Merit Authorities’ Attention. In Financial Stability Board (Issue June).
  16. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50.
  17. Ghobakhloo, M., Hong, T. S., Sabouri, M. S., & Zulkifli, N. (2012). Strategies for successful information technology adoption in small and medium-sized enterprises. Information (Switzerland), 3(1), 36–67.
  18. Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121.
  19. Hair Jr, J. F., Black, W. C., Barry, B. J., & Anderson, R. E. (2014). Multivariate Data Analysis (Seventh Ed). Harlow, Essex: Pearson Education Limited.
  20. Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580.
  21. Hiran, K. K., & Henten, A. (2019). An integrated TOE–DoI framework for cloud computing adoption in the higher education sector: case study of Sub-Saharan Africa, Ethiopia. International Journal of Systems Assurance Engineering and Management, 11(2), 441–449.
  22. Hussein, R., Karim, N. S. A., Mohamed, N., & Ahlan, A. R. (2007). The Influence of Organizational Factors on Information Systems Success in E-Government Agencies in Malaysia. The Electronic Journal of Information Systems in Developing Countries, 29(1), 1–17.
  23. Lin, H. F. (2014). Understanding the determinants of electronic supply chain management system adoption: Using the technology-organization-environment framework. Technological Forecasting and Social Change, 86(C), 80–92.
  24. Maduku, D. K., Mpinganjira, M., & Duh, H. (2016). Understanding mobile marketing adoption intention by South African SMEs: A multi-perspective framework. International Journal of Information Management, 36(5), 711–723.
  25. Marselia, S., Sulistiowati, & Lemantara, J. (2018). Analisis Kesuksesan Website E-Learning Management System (EMS) Dengan Menggunakan Model Delone dan McLean pada Cabang Primagama Bumi Citra Fajar (BCF). Jsika, 7(1), 1–10.
  26. Melville, N., & Carroll, W. E. (2016). Information Technology And Organizational Performance: An Integrative Model of IT Business Value. Project Management Journal, 28(2), 283–322.
  27. Noch, M. Y., & Pattiasina, V. (2017). Persepsi Risiko Dan Kepuasan Wajib Pajak Terhadap Pengunaan Sistem E-Filling ( Survei Pada Kpp Pratama Jayapura ) Pajak Terhadap Pengunaan Sistem E-Filling. Seminar Nasional APTIKOM (SEMNASTIKOM), August 2018, 421–427.
  28. Paré, G., Sicotte, C., Poba-nzaou, P., & Balouzakis, G. (2011). Clinicians ’ perceptions of organizational readiness for change in the context of clinical information system projects : insights from two cross-sectional surveys. 1–14.
  29. Petter, S., Delone, W., & McLean, E. R. (2013). Information systems success: The quest for the independent variables. Journal of Management Information Systems, 29(4), 7–61.
  30. Picoto, W. N., Bélanger, F., & Palma-Dos-Reis, A. (2014). An organizational perspective on m-business: Usage factors and value determination, European Journal of Information Systems, 23(5), 571–592.
  31. Pramanita, I. G. A. A. N. G., & Rasmini, N. K. (2020). Sistem E-Filing dan Kepatuhan Wajib Pajak Orang Pribadi: Studi D&M IS Success Model pada KPP Pratama Denpasar Timur. E-Jurnal Akuntansi, 30(11), 2825–2838.
  32. Premkumar, G. (1998). Adoption of new information technologies in small businesses. Proceedings - Annual Meeting of the Decision Sciences Institute, 27(4), 467–484.
  33. Priyanto, H., Najib, M., & Septiani, S. (2020). Faktor Adopsi E-Marketing dan Pengaruhnya Terhadap Kinerja Pemasaran UKM Kuliner Kota Bogor. Jurnal Sistem Informasi Bisnis, 10(2), 2.
  34. Pudjianto, B., Zo, H., Ciganek, A. P., & Rho, J. J. (2011). Determinants of E-Government Assimilation in Indonesia : An Empirical Investigation Using a TOE Framework. Asia Pacific Journal of Information Systems, 21(1), 50–80.
  35. Qalati, S. A., Li, W., Vela, E. G., Bux, A., Barbosa, B., & Herzallah, A. M. (2020). Effects of Technological, Organizational, and Environmental Factors on Social Media Adoption. Journal of Asian Finance, Economics and Business, 7(10), 989–998.
  36. Ramayah, T., Ling, N. S., Taghizadeh, S. K., & Rahman, S. A. (2016). Factors influencing SMEs website continuance intention in Malaysia. Telematics and Informatics, 33(1), 150–164.
  37. Ramdani, B., Chevers, D., & Williams, D. A. (2013). SMEs’ adoption of enterprise applications: A technology-organisation-environment model. Journal of Small Business and Enterprise Development, 20(4), 735–753.
  38. Rui, G. (2007). Information System Innovation Adoption Among Organizations - A Match-Based Framework and Empirical. National University of Singapore.
  39. Ryu, H. S. (2018). Understanding Benefit and Risk Framework of Fintech Adoption: Comparison of Early Adopters and Late Adopters. Proceedings of the 51st Hawaii International Conference on System Sciences, 3864–3873.
  40. Safitri, K. (2020). IHSG dan Rupiah Pagi Melaju, Berkat Omnibus Law? Retrieved March 9, 2021, from
  41. Soliman, K. S., & Janz, B. D. (2004). An exploratory study to identify the critical factors affecting the decision to establish Internet-based interorganizational information systems. Information and Management, 41(6), 697–706.
  42. Tan, K. S., Chong, S. C., Lin, B., & Eze, U. C. (2009). Internet-based ICT adoption: Evidence from Malaysian SMEs. Industrial Management and Data Systems, 109(2), 224–244.
  43. Thong, J. Y. L. (1995). CEO Characteristics , Organizational Characteristics and Information Technology Adoption in Small Businesses. 23(4), 429–442.
  44. Tornatzky, L. ., & Fleischer, M. (1990). Technological Innovation as a Process. In The Processes of Technological Innovation (pp. 27–50). Lexington: Lexington Books.
  45. Tripopsakul, S. (2018). Social media adoption as a business platform: An integrated tam-toe framework. Polish Journal of Management Studies, 18(2), 350–362.
  46. Tsai, M., Lee, W., & Wu, H. (2010). Determinants of RFID adoption intention : Evidence from Taiwanese retail chains §. Information & Management, 47(5–6), 255–261.
  47. Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. Marketing Bulletin, 24(1), 1–32.
  48. Wu, F., & Lee, yi K. (2005). Determinants of e-communication adoption: The internal push versus external pull factors. Marketing Theory, 5(1), 7–31.
  49. Xu, B., Shao, B., Lin, Z., & Shi, Y. (2009). Enterprise adoption of internet banking in China. Journal of Global Information Technology Management, 12(3), 7–28.
  50. Zhu, K., Kraemer, K., & Xu, S. (2003). Electronic business adoption by European firms: A cross-country assessment of the facilitators and inhibitors. European Journal of Information Systems, 12(4), 251–268.