Main Article Content


Many activities have switched to online, carrying out remote activities due to the pandemic that has hit worldwide and requires staying home to avoid physical contact with other people. One of the activities carried out to reduce physical contact is transacting online using m-banking. This study aims to empirically test the effect of behavioral intention on use behavior. This study was limited to testing the effect of performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation, price value, habit, trust, and security on behavior intention and intention to use behavior in students. This study applied a quantitative approach, and there were 100 respondents. The sampling technique used a purposive sampling method. Data collection was carried out by distributing questionnaires, and then the data was processed using SmartPLS version 4.0 to carry out instrument and hypothesis testing. The results of the study explained that habit and security had a positive influence on behavioral intention, and behavioral intention had a positive influence on use behavior.


Behavioral intention intention to use post-pandemic m-banking loyalty

Article Details

How to Cite
Ikhlash, M., Huwaida, J. H., & Asmu’i, F. (2023). Loyalty in the post-pandemic landscape: Unraveling how behavioral intentions shape m-banking loyalty. Journal of Contemporary Accounting, 5(3), 142–154.


  1. Abdullah, M. B., Ali Abdallah, A., Nripendra, P. R., Hatice, K., & Pushp, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38-52.
  2. Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99-110.
  3. Anggraeni, R., Hapsari, R., & Muslim, N. A. (2021). Examining factors influencing consumers intention and usage of digital banking: evidence from Indonesian digital banking customers, 9(3), 18.
  4. Bustami, E., Situngkir, S., Yacob, S., & Octavia, A. (2021). Customers’ behavioral intention on mobile banking services in Indonesia. International Journal of Research in Business and Social Science, 10(7), 353-362.
  5. Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Lawrence Erlbaum Associates Publishers.
  6. Fatima, T., Kashif, S., Kamran, M., & Awan, T. M. (2021). Examining factors influencing adoption of m-payment: extending UTAUT2 with perceived value. International Journal of Innovation, Creativity, and Change, 15(8), 276-299.
  7. Garson, G. D. (2016). Partial least squares. Regression and structural equation models. Asheboro: Statistical Associates Publishers.
  8. Gefen, D., Karahanna, E., & Straub, D. W. (2003). Inexperience and experience with online stores: the importance of TAM and trust. IEEE Transactions on Engineering Management, 50(3), 307–321.
  9. Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106-121.
  10. Merhi, M., Hone, K., & Tarhini, A. (2019). A cross-cultural study of the intention to use mobile banking between Lebanese and British consumers: Extending UTAUT2 with security, privacy and trust. Technol Soc, 59, 101151.
  11. Mostafa, A., & Eneizan, B. (2018). Factors affecting acceptance of mobile banking in developing countries. International Journal of Academic Research in Business and Social Sciences, 8.
  12. Nguyen, T., Nguyen, H., Mai, H., & Thi Minh Trâm, T. (2020). Determinants of digital banking services in Vietnam: Applying UTAUT2 model. Asian Economic and Financial Review, 10, 680-697.
  13. Ningsih, A., & Hamid, R. S. (2022). Peran effort expectancy facilitating conditions price value dalam menentukan behavioural intentions pada nasabah pengguna mobile banking. Owner: Riset dan Jurnal Akuntansi, 7(1), 322-332.
  14. O’Cass, A., & Fenech, T. (2003). Web retailing adoption: exploring the nature of internet users Web retailing behaviour. Journal of Retailing and Consumer Services, 10(2), 81–94.
  15. Owusu Kwateng, K., Osei Atiemo, K.A., & Appiah, C. (2019). Acceptance and use of mobile banking: an application of UTAUT2. Journal of Enterprise Information Management, 32(1), 118-151.
  16. Pasaribu, P. N. (2022). The effect of the covid-19 pandemic and UTAUT2 in adopting mobile banking at Jakarta. Jurnal Manajemen (Edisi Elektronik), 13(1), 1-14.
  17. Putra, M. A. A., Huda, M. Q., & Fetrina, E. (2019). An evaluation of e-money products using UTAUT 2 model (the case of Bank Mandiri). Paper presented at the 2019 7th International Conference on Cyber and IT Service Management (CITSM).
  18. Raman, A., & Don, Y. (2013). Preservice teachers’ acceptance of learning management software: an application of the UTAUT2 model. International Education Studies, 6.
  19. Ramos, F. L., Ferreira, J. B., Freitas, A. S. de, & Rodrigues, J. W. (2018). The effect of trust in the intention to use m-banking. Brazilian Business Review, 15(2), 175–191.
  20. Santoso, A. A., & Rachmawati, I. (2021). Analisis minat pengguna layanan m-banking livin'by mandiri di Indonesia menggunakan model modifikasi UTAUT 2. eProceedings of Management, 8(5).
  21. Shafly, N. A. (2020). Penerapan model UTAUT2 untuk menjelaskan behavioral intention dan use behavior penggunaan mobile banking di kota Malang. Jurnal Ilmiah Mahasiswa FEB, 8(2).
  22. Shareef, M. A., Baabdullah, A., Dutta, S., Kumar, V., & Dwivedi, Y. K. (2018). Consumer adoption of mobile banking services: An empirical examination of factors according to adoption stages. Journal of Retailing and Consumer Services, 43, 54-67.
  23. Shen, Y.-C., Huang, C.-Y., Chu, C.-H., & Hsu, C.-T. (2010). A benefit–cost perspective of the consumer adoption of the mobile banking system. Behaviour & Information Technology, 29(5), 497–511.
  24. Singh, S., & Srivastava, R. K. (2018). Predicting the intention to use mobile banking in India. International Journal of Bank Marketing, 36(2), 357-378.
  25. Suhartanto, D. (2020). Analisa Data untuk Riset Bisnis: SPSS, AMOS, PLS. Bandung: Politeknik Negeri Bandung.
  26. Susanto, A., Chang, Y., Zo, H., & Park, M. C. (2012). The role of trust and security in Smartphone banking continuance. Paper presented at the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).
  27. Titalessy, P. B. (2020). Cashless payments and its impact on inflation. Advances in Social Sciences Research Journal, 7(9), 524-532. Retrieved from doi:10.14738/assrj.79.9074.
  28. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
  29. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
  30. Wandira, R., & Fauzi, A. (2022). TAM approach: Effect of security on customer behavioral intentions to use mobile banking. Daengku: Journal of Humanities and Social Sciences Innovation, 2(2), 192-200.
  31. Widodo, M., Irawan, M. I., & Sukmono, R. A. (2019). Extending UTAUT2 to explore digital wallet adoption in Indonesia. Paper presented at the 2019 International Conference on Information and Communications Technology (ICOIACT).
  32. Zhou, Q., Lim, F. J., Yu, H., Xu, G., Ren, X., Liu, D., Wang, X., Mai, X., & Xu, H. (2021). A study on factors affecting service quality and loyalty intention in mobile banking. Journal of Retailing and Consumer Services, 60, 102424.