

In Silico Study of Monascus sp. Pigment Derivatives as Anticardiovascular Candidate

Dichy Nuryadin Zain, Anna Yuliana*

Prodi S1 Farmasi, Fakultas Farmasi, Universitas Bakti Tunas Husada *Corresponding author: <u>annayuliana@universitas-bth.ac.id</u>

Abstract

Background: Cardiovascular disease is the leading cause of death in the world. The therapeutic activity of Monascus sp. pigment can act as an anticardiovascular agent. Research on Monascus sp. pigment is rapidly developing, including the discovery of new pigments, the methods used, and their identification. Currently, there are 57 dyestuff compounds that have been successfully isolated from Monascus molds. So, researchers conducted an in-silico study of Monascus sp.

Objective: To determine whether it can have better interactions and activities as an anticardiovascular medicine candidate.

Method: PAK1 is used as a receptor for anticardiovascular drugs. 57 test compounds were carried out for ligand preparation and application of Lipinski's rule of five by using MarvinSketch software, ADME prediction and toxicity testing using PreADMET, the docking process using Autodock tools, and visualization using Discovery Studio.

Results: The results of the docking analysis are seen from the values of binding affinity consecutively. compound R3 (-8.74 kcal/mol), red shandong (-8.16 kcal/mol), and monaphilol (-8.14 kcal/mol) are lower than the comparison compound bisoprolol (-6.44 kcal/mol), which shows that the three compounds have better interactions than the comparison compounds.

Conclusion: Derivative compounds from Monascus sp. Pigment are predicted to have better interactions and can be used as anticardiovascular medicine candidates.

Keywords: Monascus sp., pigment, anticardiovascular, in silico, PAK1, ADME, and toxicity

1. Introduction

The cardiovascular system is a very important system in the body because cells and tissues can work properly with the supply of oxygen and blood. Cardiovascular disease is a disease that affects the heart and blood vessels. Some people experience this disease. Common diseases include coronary heart disease, stroke, heart failure, and hypertension (Aisyah, 2014).

Coronary Heart Disease (CHD) is a major health problem that often occurs in developed and developing countries. There are various factors that can cause this disease, so multifactorial prevention is needed. Prevention is pursued wherever possible by controlling risk factors because they play an important role in primary and secondary prevention (Farahdika & Azam, 2015). Heart disease is one of the main causes of problems in the world and the number one cause of death. In 2015, there were more than 17 million people in the world who died from heart and blood vessel disease, or about 31% of all deaths in the world, around 8.7 million were due to coronary heart disease. More than 75% of heart and vascular disease occurs in low- to moderate-income developing countries (WHO, 2015).

The therapeutic activity of the red pigment depends on the presence of several bioactive metabolites such as monascopyridines, xanthomonadin, monascumic acid, ascorbic acid, polyphenols, and monacolin, which act as anticardiovascular agents. Monascus sp. is a type of mold

that is used for rice fermentation to produce red rice (Red Mold Rice) or Angkak. For a long time, Angkak has been used as food in Asia and is used in traditional medicine with various bioactive compounds, including monacolin, which has the potential to be used as a nutraceutical (Mostafa & Abbady, 2014; Nguyen *et al.*, 2017).

Research on the pigments of Monascus sp. has developed rapidly, including the discovery of new pigments, methods, and methods of identification. Until now, there have been 57 dyestuff compounds that have been isolated from Monascus molds (Yuliana *et al.*, 2017). However, the study of its activities and safety is relatively limited. The *in-silico* toxicology method can provide a preliminary overview and identify the toxicity of a compound or a selection of potential drug compounds that will be developed into new drug candidates. The in silico test is a complement to *in vitro* and *in vivo* tests that can streamline the use animals, reduce cost and save time (Purnomo, 2013).

The laboratory test of one of the pigments of Monascus sp. has proven to have anticardiovascular activity and has successfully isolated the color pigment from Monascus sp., so further research is needed regarding other pigments from Monascus sp., which can be a solution to finding new drug candidate compounds that have anti-cardiovascular effects. So, the study with the title "In Silico Study of pigment derivative compounds from Monascus sp. as an Anticardiovascular candidate" is carried out to predict the active compound of the Monascus sp. Pigment and its derivatives as an anticardiovascular agent and the interaction that accompanies the molecule complex with the receptor on the target cell (Yuliana *et al.*, 2017).

2. Methodology

2.1. Tool

The tools that are used in this research are computer hardware and software. These tools include a personal computer with Intel(R) Celeron(R) N4000 specification between 1.10 GHz (CPUs), 1.1GHZ and 4.96 GB of RAM, and the software used in this research is MarvinSketch, Autodoc, Molegro Molecular Viewer, and web-based programs such as, PdbSum and PreADMET.

2.2. Material

The materials used were the PAK1 receptor in the form of PDB files, which were the results of the identification of receptors for anti-cardiovascular products that were downloaded from http://www.rscb.org, and 57 dyestuff compounds isolated from azhapilone derivatives from the mold Monascus sp. which is listed in Table 1.

2.3. Method

2.3.1 Ligand preparation

Ligands were drawn using MarvinSketch software version 5.2.5.1, which further optimized the geometry and protonation at pH 7.4. The next process is geometry optimization to get a stable structure with the minimum potential energy, and then the results are saved in pdb format for docking process using mol2 format (Prasetia, 2011).

2.3.2 Drug Scan

Drug observations Conducted on dyestuffs that are derived from azhapilone from Monascus sp. The analysis was carried out considering Lipinski's rule of five and the oral bioavailability of the ligand. The parameters used were <500 g mol molecular weight, <5 lipophilicity, <5 hydrogen bond donors, <10 hydrogen bond acceptors, and a refractory molarity between 40-130 (Lipinski *et al.*, 1997; Lipinski *et al.*, 2001).

2.3.3 ADME study

The preADMET program is accessed at http://preadmet.bmdrc.org/. The structure of each compound is converted to molfile (*.mol). The preADMET program will automatically calculate the predicted absorption for Caco-2 cells, HIA (Human Intestinal Absorption), and bound plasma proteins (Nursamsiar *et al.*, 2016).

2.3.4 Toxicity test

The toxicity test was carried out on the Monascus sp. pigment compound. This process uses the preADMET program at http://preadmet.bmdrc.org/ and can be classified based on their toxicity (Raies & Bajic, 2016; Ruswanto, 2015).

2.3.5 Receptor analysis

Anticardiovascular receptors were analyzed using a web-based program called PDBsum (www.ebi.ac.uk/pdbsum/). Enter the 5IME code as the PDB receptor code, and then the profile data of the receptor will appear. Then download it from the Protein Data Bank at www.rcsb.org (Raies & Bajic, 2016; Ruswanto, 2015).

2.3.6 Docking validation

Docking method validation is done using Autodoc software. This validation is carried out on valid ligands and docking results. The parameter used is the Root Mean Square Deviation (RMSD) parameter. The docking method is said to be valid if it has an RMSD value <2. This validation process will compare the position of the original ligand on the tested receptor against the same ligand position (copy ligand) when the copy ligand is docked. At this stage, it is carried out in the

absence of water to determine the effect of the presence of water on the docking process. The presence of water will block the bond between the ligand and the receptor because water can form hydrogen bonds with the receptor (Raies & Bajic, 2016; Ruswanto, 2015).

2.3.7 Docking of sample ligands and visualization of interactions with target proteins

Docking is done with Autodock software, and then the same grid box is set in the validation process. The docking results were selected for ligands and proteins with the lowest binding affinity value and then stored in the pdb format (Meiyanto, 2012).

3. Result and discussion

3.1. Drug scan

Based on the data from the drug scan results in Table I, it shows that there are 12 compounds that do not meet Lipinski's rule of five: Isolate MPs 1, Isolate MPs 2, Monaspyridine B, N-gluscosyl rubropuctamine, N-gluscosyl monascorubramine, N-glutoryl rubropuctamine, Red derivate 3, Red derivate 4, Red derivate 7, Red derivate 8, Y3. Meanwhile, 45 other compounds meet the requirement of Lipinski's rule of five; those are FK 17-P2B2, Monankarin AB, Monankarin CB, Monankarin E, Monankarin F, Monaphilones A, Monaphilones B, Monaphilones C, Monapurones A, Monapurones B, Monapurones C, Monarubrin (Y, Bf), Monascusone A , Monascusone B, Monascuspiloin, Monashexenon, Purpureus One, Robropuctin, Xantomonascin A, Xantomonascin B, Yellow II, Monaphilol A, Monaphilol B, Monaphilol C, Monaphilol D, Monasfluor A, Monasfluor B, Coumpound R3, Glycil-rubamin 3 , Isolate MPs 4, Monaspyridine A, Monaspyridine C, Monaspyridine D, New red pigment, Red derivate 1, Red derivate 2, Red derivate 5, Red derivate 6, Red Shandong 1, Red Shandong 2, Unnamed, PPV, Monascuskaodione A, Monascuskaodione B. Compounds that meet the Lipinski rules are presumed to have good bioavailability. However, not all compounds have good activity according to Lipinski's rules (Santoso *et al.*, 2016).

3.2. ADMET study

This is a quantitative test using the preADMET program. In general, the ADME process aims to determine when the drug enters the body and the drug is absorbed (absorption), then spread to all body tissues through the blood (distribution), then metabolized in certain organs, especially the heart (metabolism), and then the metabolic results are released from the body (excretion). Based on the results of the ADME test using the web-based PreADMET program in Table 2, the pigment derivative compounds of Monascus sp. had a moderate permeability value, which is in the range of

4-70%; only FK 17-P2B2 (0.993%) compounds have low permeability. The absorption process in the human intestine is in the range of 70-100% which is a good range (Nursamsiar *et al.*, 2016). The protein binding in the blood of the Isolate MPs3 compound, Isolate MPs4, N-glutaryl monascorubramine, Monaspyridine A, Monaspyridine B, Monaspyridine D, Red derivate 1, Red derivate 5, Monascuskaodione B, Monaphilones A, Monaphilones B, Monarubrin (Y, Bf), Purpures one, Robropuctin, Yellow II, Xantomonascin A, Xantomunascin B, Monaphilol A, Monaphilol B, Monasfluor A, Monasfluor B have high values of > 90%, indicating strong bonds with plasma proteins in the body.

Based on the data in Table 2, the toxicity test used the Ames test parameter to determine that most of the compounds are non-mutagenic, which means that they do not cause changes in genetics (DNA or RNA) either at the level of the gene or chromosome sequences that can cause cancer or are also known as carcinogens.

		Parameter					
No	Compound Name	Molecular Weight (<500)	Lipofility (<5)	Hydrogen Bond Donor (<5)	Hydrogen Bond Acceptor (<10)	Refractory Molars (40-130)	
			Red Pigme	nt			
1	Coumpound R3	374.4275	2.05	1	8	101.41	
2	Glycyl-rubropuntamin	413.4636	3.33	1	10	114.09	
3	Isolate MPs 1	510.5821	2.85	5	13	152.26	
4	Isolate MPs 2	538.6352	3.74	5	13	161.46	
5	Isolate MPs 3	439.5009	4.08	1	10	123.54	
6	Isolate MPs 4	439.5439	4.32	1	8	126.87	
7	Monaspyridine A	355.4275	4.23	0	7	98.81	
8	Monaspyridine B	383.4807	5.12	0	7	108.01	
9	Monaspyridine C	357.4434	3.90	1	7	98.88	
10	Monaspyridine D	343.4599	4.61	1	6	100.56	
11	N-glucoscyl rubroputamine	557.6320	2.65	4	12	149.92	
12	N-glucoscyl monascurobamine	585.6851	3.54	4	12	159.12	
13	N-glutaryl monascorubramine	511.5635	4.30	2	13	138.82	
14	N-glutaryl rubropuctamine	483.5104	3.41	2	13	129.62	
15	New red pigment	375.4587	1.16	3	7	103.91	
16	Red derivate 1	453.5274	4.65	1	10	128.03	
17	Red derivate 2	425.4743	3.76	1	10	118.83	
18	Red derivate 3	497.5369	4.01	2	13	134.07	
19	Red derivate 4	469.4838	3.12	2	13	124.87	
20	Red derivate 5	453.3274	4.65	1	10	128.03	
21	Red derivate 6	425.4743	3.76	1	10	118.83	
22	Red derivate 7	497.5369	4.01	2	13	134.07	
23	Red derivate 8	469.4838	3.12	2	13	124.87	

Table 1. Drug scan test results in accordance with Lipinski's the rule of five

	Parameter					
No	Compound Name	Molecular Weight (<500)	Lipofility (<5)	Hydrogen Bond Donor (<5)	Hydrogen Bond Acceptor (<10)	Refractory Molars (40-130)
24	Red Shandong 1	303.3960	0.54	4	4	91.77
25	Red Shandong 2	331.4492	1.43	4	4	100.96
26	Unnamed	375.4587	1.16	3	7	103.91
			Red Purpl	e		
27	PP-V	412.4556	3.26	3	9	125.22
			Colorless o	oil		
28	Monascuskaodione A	356.4123	3.38	0	7	100.67
29	Monascuskaodione B	384.3654	4.27	0	7	109.87
			Yellow Pigm	ent		
30	FK 17-P2B2	236.2637	0.35	2	5	66.34
31	Monankarin A-B	358.3851	2.36	2	7	98.10
32	Monankarin C-D	372.4117	2.90	2	7	103.14
33	Monankarin E	344.3585	2.02	2	7	93.63
34	Monankarin F	356.4123	2.99	2	6	103.21
35	Monaphilones A	360.4871	4.16	1	6	106.90
36	Monaphilones B	322.4339	3.27	1	6	97.70
37	Monaphilones C	336.4657	4.14	1	7	95.95
38	Monapurones A	330.4180	2.98	1	6	97.87
39	Monapurones B	344.4446	3.93	0	5	101.83
40	Monapurones C	344.4446	3.93	0	5	101.83
41	Monarubrin (Y.Bf)	330.4180	3.13	1	6	97.95
42	Monascusone A	254.2790	0.99	3	6	67.08
43	Monascusone B	302.3218	1.64	0	7	82.07
44	Monascuspiloin	360.4440	3.11	1	6	101.32
45	Monashexenoone	320.4232	3.70	1	7	92.33
46	Purpureus one	390.5131	5.43	0	8	107.95
47	Robropuctin	358.4712	4.02	1	6	107.15
48	Xantomonascin A	388.4111	4.00	2	8	102.20
49	Xantomonascin B	414.4914	3.75	2	8	126.81
50	Y3	448.571	0.34	6	8	115.88
51	Yellow II	372.4547	4.31	1	7	116.32
			Orange Pign	nent		
52	Monaphilol A	384.4654	3.62	1	6	111.10
53	Monaphilol B	356.4123	2.73	1	6	101.89
54	Monaphilol C	440.5287	3.59	1	8	125.32
55	Monaphilol D	412.4755	2.70	1	8	116.12
		Blue	Fluorescence	Pigment		
56	Monasfluor A	354.4394	3.98	0	5	104.30
57	Monasfluor B	384.4654	4.27	0	7	109.87

Note: Text in bold does not meet the requirements.

Table 2. Prediction of toxicity and ADME result

		Parameter				
No	Compound Name	CaCo ₂	HIA	Plasma Protein	Ames test	
	_			Binding		
Red Pigment						
1	Coumpound R3	17.4163	95.677133	73.231309	Non mutagen	
	-	(Medium)	(Good)	(Weakly Bonded)	_	

				Parameter	
No	Compound Name	CaCo ₂	HIA	Plasma Protein	Ames test
				Binding	
2	Glycyl-rubropuntamin	20.9325	96.702970	87.663371	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
3	Isolate MPs 1	9.25845	74.407933	64.976138	Mutagen
		(Medium)	(Good)	(Weakly Bonded)	
4	Isolate MPs 2	8.92909	78.193552	78.061242	Mutagen
		(Medium)	(Good)	(Weakly Bonded)	
5	Isolate MPs 3	21.5677	98.309963	90.416630	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
6	Isolate MPs 4	25.6923	99.303546	92.314035	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
7	N-glucoscyl rubroputamine	12.4451	85.412276	65.185992	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
8	N-glucoscyl monascurobamine	12.5306	87.690078	79.078783	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
9	N-glutaryl	19.8389	92.538271	90.486415	Non
	monascorubramine	(Medium)	(Good)	(Strongly Bonded)	mutagen
10	N-glutaryl rubropuctamine	19.7598	90.311224	88.136.616	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
11	New red pigment	17.9896	89.666473	66.572743	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
12	Monaspyridine A	26.367	98.750840	91.953695	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
13	Monaspyridine B	32.7272	98.912525	93.500167	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
14	Monaspyridine C	22.7729	96.648798	89.685299	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
15	Monaspyridine D	22.9611	96.270412	97.268350	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
16	Red derivate 1	22.1952	98.668455	90.932647	Non
		(Medium)	(Good)	(Strongly Bonded)	mutagen
17	Red derivate 2	21.2765	97.891289	88.641765	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
18	Red derivate 3	20.5128	91.491229	89.736964	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
19	Red derivate 4	20.4423	88.981951	86.838945	Non mutagen
		(Medium)	(Good)	(Weakly Bonded)	
20	Red derivate 5	22.1952	98.668455	90.932647	Non
		· ·			
21		(Medium)	(Good)	(Strongly Bonded)	mutagen
	Red derivate 6	(Medium) 21.2765	(Good) 97.891289	(Strongly Bonded) 88.641765	mutagen Non mutagen
	Red derivate 6	(Medium) 21.2765 (Medium)	(Good) 97.891289 (Good)	(Strongly Bonded) 88.641765 (Weakly Bonded)	mutagen Non mutagen
22	Red derivate 6 Red derivate 7	(Medium) 21.2765 (Medium) 20.5128	(Good) 97.891289 (Good) 91.491229	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964	mutagen Non mutagen Mutagen
22	Red derivate 6 Red derivate 7	(Medium) 21.2765 (Medium) 20.5128 (Medium)	(Good) 97.891289 (Good) 91.491229 (Good)	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded)	mutagen Non mutagen Mutagen
22 23	Red derivate 6 Red derivate 7 Red derivate 8	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945	mutagen Non mutagen Mutagen Mutagen
22 23	Red derivate 6 Red derivate 7 Red derivate 8	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium)	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good)	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded)	mutagen Non mutagen Mutagen Mutagen
22 23 24	Red derivate 6 Red derivate 7 Red derivate 8 Red Shandong 1	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium) 13.6843	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good) 85.719545	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded) 71.398196	mutagen Non mutagen Mutagen Mutagen Mutagen
22 23 24	Red derivate 6 Red derivate 7 Red derivate 8 Red Shandong 1	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium) 13.6843 (Medium)	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good) 85.719545 (Good)	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded) 71.398196 (Weakly Bonded)	mutagen Non mutagen Mutagen Mutagen Mutagen
22 23 24 25	Red derivate 6Red derivate 7Red derivate 8Red Shandong 1Red Shandong 2	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium) 13.6843 (Medium) 14.2523	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good) 85.719545 (Good) 87.122330	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded) 71.398196 (Weakly Bonded) 87.278357	mutagen Non mutagen Mutagen Mutagen Mutagen Non mutagen
22 23 24 25	Red derivate 6Red derivate 7Red derivate 8Red Shandong 1Red Shandong 2	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium) 13.6843 (Medium) 14.2523 (Medium)	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good) 85.719545 (Good) 87.122330 (Good)	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded) 71.398196 (Weakly Bonded) 87.278357 (Weakly Bonded)	mutagen Non mutagen Mutagen Mutagen Mutagen Non mutagen
22 23 24 25 26	Red derivate 6Red derivate 7Red derivate 8Red Shandong 1Red Shandong 2Unnamed	(Medium) 21.2765 (Medium) 20.5128 (Medium) 20.4423 (Medium) 13.6843 (Medium) 14.2523 (Medium) 17.9896	(Good) 97.891289 (Good) 91.491229 (Good) 88.981951 (Good) 85.719545 (Good) 87.122330 (Good) 89.666473	(Strongly Bonded) 88.641765 (Weakly Bonded) 89.736964 (Weakly Bonded) 86.838945 (Weakly Bonded) 71.398196 (Weakly Bonded) 87.278357 (Weakly Bonded) 66.572743	mutagen Non mutagen Mutagen Mutagen Mutagen Non mutagen Non mutagen

		Parameter				
No	Compound Name	CaCo ₂	HIA	Plasma Protein	Ames test	
	-			Binding		
		Re	d Purple			
27	PP-V	4.01366	92.923736	86.114618	Mutagen	
		(Medium)	(Good)	(Weakly Bonded)	C	
		Col	orless oil	× • •		
28	Monascuskaodione A	28.3725	98.770329	88.897997	Mutagen	
		(Medium)	(Good)	(Weakly Bonded)	0	
29	Monascuskaodione B	36.0846	98.771155	92.381422	Mutagen	
		(Medium)	(Good)	(Strongly Bonded)		
		Yello	w Pigment			
30	FK 17-P2B2	0.993	90.432010	56.076521	Mutagen	
		(Low)	(Good)	(Weakly Bonded)		
31	Monankarin A-B	21.4435	93.567317	85.583078	Non mutagen	
-		(Medium)	(Good)	(Weakly Bonded)		
32	Monankarin C-D	21.9971	93.909198	87.093425	Non mutagen	
		(Medium)	(Good)	(Weakly Bonded)		
33	Monankarin E	20.8618	93.127449	81.200843	Non mutagen	
00		(Medium)	(Good)	(Weakly Bonded)		
34	Monankarin F	35 5122	93 789307	88 543275	Non mutagen	
01		(Medium)	(Good)	(Weakly Bonded)	non matagen	
35	Monanhilones A	46.4843	96.065559	93.232878	Non	
	F	(Medium)	(Good)	(Strongly Bonded)	mutagen	
36	Monanhilones B	40.8229	96.054536	90.112573	Non	
00		(Medium)	(Good)	(Strongly Bonded)	mutagen	
37	Monaphilones C	26.9554	95.760530	86.135746	Non mutagen	
		(Medium)	(Good)	(Weakly Bonded)		
38	Monapurones A	26.4733	96.071604	85.103277	Non mutagen	
00	nonapai onos n	(Medium)	(Good)	(Weakly Bonded)	non matagen	
39	Monanurones B	44.272	97.697949	88.300451	Mutagen	
07	inonapai ones 2	(Medium)	(Good)	(Weakly Bonded)	inuugen	
40	Monanurones C	44.272	97.697949	88.300451	Mutagen	
10	nonapai ones e	(Medium)	(Good)	(Weakly Bonded)	inuugen	
41	Monarubrin (Y.Bf)	40.5147	96.071613	92.263384	Non	
		(Medium)	(Good)	(Strongly Bonded)	mutagen	
42	Monascusone A	19.3778	78.683369	34.939799	Non mutagen	
		(Medium)	(Good)	(Weakly Bonded)		
43	Monascusone B	22.9891	97.536574	61.438550	Mutagen	
		(Medium)	(Good)	(Weakly Bonded)	8	
44	Monascuspiloin	30.4892	96.468903	90.306522	Non	
	F	(Medium)	(Good)	(Strongly Bonded)	mutagen	
45	Monashexenoone	22.609	95.857284	88.158433	Non mutagen	
10	Tondonokonoono	(Medium)	(Good)	(Weakly Bonded)	non matagen	
46	Purnureus one	31.1835	98.247814	90.721848	Non	
10	i uipui cus one	(Medium)	(Good)	(Strongly Bonded)	mutagen	
47	Rohronuctin	46 2928	96.050080	95 896405	Non	
.,		(Medium)	(Good)	(Strongly Bonded)	mutagen	
48	<u>V3</u>	19 3732	50.125685	67 649190	Mutagen	
10		(Medium)	(Good)	(Weakly Ronded)	muugen	
49	Yellow II	34,2219	96.423561	91.738989	Mutagen	
.,		(Medium)	(Good)	(Strongly Bonded)		
50	Xantomonascin A	19 6174	88 865206	96 842776	Mutagen	
50		1710141	301003200	201014740	managen	

		Parameter					
No	Compound Name	CaCo ₂	HIA	Plasma Protein	Ames test		
				Binding			
		(Medium)	(Good)	(Strongly Bonded)			
51	Xantomonascin B	26.5245	94.538788	94.764093	Mutagen		
		(Medium)	(Good)	(Strongly Bonded)			
		Oran	ge Pigment				
52	Monaphilol A	36.7103	96.501044	95.427557	Mutagen		
		(Medium)	(Good)	(Strongly Bonded)			
53	Monaphilol B	29.408	96.568439	91.926288	Mutagen		
		(Medium)	(Good)	(Strongly Bonded)			
54	Monaphilol C	34.038	97.366571	89.549401	Non mutagen		
		(Medium)	(Good)	(Weakly Bonded)			
55	Monaphilol D	27.7997	97.311031	83.639250	Non mutagen		
		(Medium)	(Good)	(Weakly Bonded)			
		Blue Fluor	escence Pigme	nt			
56	Monasfluor A	49.808	97.649968	92.794086	Mutagen		
		(Medium)	(Good)	(Strongly Bonded)			
57	Monasfluor B	36.0846	98.771155	92.381422	Mutagen		
		(Medium)	(Good)	(Strongly Bonded)			

Note: Text in bold does not meet the requirements.

	Table 3. Analysis of anticardiovascular receptors						
No	Receptor Name	Recentor Code		RMSD			
		heceptor doue	Х	Y	Z	In IOD	
1	Phospholipase	1TGM	11.516	14.32	3.35	2.28	
2	Phospholipase A2	10XR	46.406	32.446	7.672	5.59	
3	Myotoxin II	6MQF	11.404	-71.575	55.805	4.80	
4	Lactoperoxidase	2QQT	3.367	4.056	29.937	6.29	
5	PAK1	5IME	18.472	-16.384	11.213	0.75	

Table 2 Analysis of anticardiovascular recontor

Note: Text in bold is the best receptor.

3.3. Analysis of anticardiovascular receptors

Receptor preparation in this study was done by downloading anti-cardiovascular receptors from the Protein Data Bank (https://www.rcsb.org/). There are 5 anticardiovascular receptors with the codes 1TGM, 10XR, 6MQF, 2QQT, and 5IME. Due to its best RSMD value, only 5IME was taken out of the five other compounds. The PAK1 receptor with code 5IME is then downloaded in .pdb format (Table 3).

The Ramachandran Plot analysis shows that the 5IME receptor has a stable structure because 91.2% of the residues are in the most preferred area and only 0.4% are in the least preferred area. It can be said that the structural quality of the protein is good if the residue in the disallowed region (the unwanted area) is smaller than 15% and the amino acid residue in the most favored region is greater than 50% (Amelia, 2013).

Figure 1. 5IME Ramachandran plot

3.4. Docking validation

Based on the validation results (Table 4), the RMSD value for the 5IME code PAK1 GDP receptor is 0.75, and the result is ≤ 2 . Grid box X = 18.472, Y = -16.384, and Z = 11.213. So, from the results of the validation above, the PAK1 receptor with the 5IME code met the validation criteria for the docking method so that it could be used on the sample ligand. The validation process can compare the position of the original ligand (brown) to the PAK1 receptors with the 5IME code tested against the same ligand position (copy ligand) when the copy ligand is docked. At this stage, it is carried out without water to determine the effect of the presence of water at the docking process stage (Figure 2). The presence of water can block the bonds between ligands and receptors because water can form hydrogen bonds with receptors (Pebriana *et al.*, 2012).

Fable 4 . I	Docking	validation	results
--------------------	---------	------------	---------

DDD Code		DMCD		
PDB Coue	X	Y	Z	KM3D
5IME	18.472	-16.384	11.213	0.75

Docking is done using Autodock. The receptors of the validation results are entered into the software, and then natural ligands are used for the validation process. The grid box is then arranged. The use of the grid box in the docking process is the same as the grid box used for natural ligands. So that the test ligand can interact with the area inside the receptor. The grid box center used is (X= 18.472, Y= -16.384 and Z= 11.213). The results are the binding affinity value (Raies & Bajic, 2016; Ruswanto, 2015).

Figure 2. Visualization of the docking validation results (original ligand: brown, copy ligand: green)

3.5. Docking of sample ligands and visualization of interactions with target proteins

3.5. Analysis of docking results

The docking result between the ligand and the target protein will produce various conformations of the tested compound. The binding energy must be considered in the docking results. The best conformation can be seen through the binding energy (ΔG) which has units of kcal/mol. The binding energy describes the strength of the bond that occurs between the ligand and the target protein. The bond energy has a relationship with the inhibition constant. The smaller the inhibition constant, the smaller the bond energy. So, it is known that the smaller the bond energy, the more preferred the interaction between ligands and enzymes (Meiyanto, 2012). The results of each conformation between the ligands and the target protein can be seen in Table 5.

The data in Table 5 shows that all the sample ligands have the ability to bind to the target protein. According to the results of the analysis above, the average of the sample ligand has a smaller binding affinity than the comparison compound (Bisoprolol). This shows that the sample compound modified with the derivative compound from Monascus sp. can inhibit the target protein well and is more stable than the comparison compound. Bisoprolol is a drug belonging to the group of β -blockers, a class of medicines used primarily in cardiovascular diseases (Sabidó *et al.*, 2019).

No	Compounds Name	Binding affinity	Hydrogen Bond	Amino Acid
1	Comparison compound	-6.44	LEU347	LEU347, MET319, SER351, GLY350, ALA348,
	(Bisoprolol)		MET319	LYS538, THR406, TYR330, ILE316. VAL342,
				PHE408, LYS299, ASP507. ALA297. GLU345,
				VAL328, LEV396, MET344, TYR346
2	Coumpound R3	-8.74	LEU347	LEU347, THR406, ASP407, LYS299, VAL343,
			THR406	ILE298, VAL284, ALA297, TYR346, LEU396,
			ASP407	MET344, GLU315, TYR330, MET319, ILE316
3	Red Shandong 2	-8.16	LEU347	LEU347, THR406, GLY350, ALA297, VAL284,

Table 5. Interaction of ligands with tested target proteins

			THR406	LYS299, MET319, TYR330, ILE316, VAL342,
				ILE298, GLU314, MET344, ASP407, GLU345, VAL328, LEU396, TYR346
4	Monaphilol C	-8.14	LEU347	LEU347, LYS299, TYR346, LEU396, GLU345,
			LYS199	VAL328, ALA297, THR406, MET344, ASP402,
				ILE316, GLU315, VAL342, MET319, VAL284,
				GLY350
5	Monankarin A-B	-7.81	ASP407	ASP407, LYS299, LEU347, MET344, VAL342,
			LYS299	ILE298, GLU345, VAL328, ALA297, TYR346,
			LEU347	LEU396, GLY350, SER351, ASP393, ASN394
6	Monankarin F	-7.79	GLU315	GLU315, VAL342, ASP393, THR406, ASP407,
			VAL342	PHE408, MET319, MET344, LYS299, ILE298,
				VAL284, ALA297, LEU396, ASN394
7	Unnamed	-7.77	LEU347	LEU347, VAL342, THR406, ALA297, LEU396,
				VAL328, GLU345, MET344, TYR346, VAL284,
				ILE298, ASP407, LYS299, GLY350, ILE276
8	Monaphilol D	-7.76	LYS298	LYS298, GLU315, ASP393, MET344, ASP407,
			GLU315	PHE408, ILE316, TYR330, MET319, VAL342,
				MET301, GLU349, VAL284, ALA297, VAL328,
				LEU396, THR406
9	Monaspyridine C	-7.66	LEU347	LEU347, GLU345, GLY279, GLN278, ILE276,
			GLU345	LEU396, TYR346, VAL328, ALA297, MET344,
				GLU315, VAL342, LYS299, ILE298, VAL284,
				GLN278, GLY279
10	Monankarin C-D	-7.63	-	GLU315, ALA297, ILE276, LEU347, TYR346,
				VAL328, GLU345, GLY350, SER351, LEU396,
				VAL284, LYS299, ASP407, ILE298, VAL342,
				MET344
11	Monashexenoone	-7.60	LEU347	LEU347, LYS299, ASP407, THR406, GLY350,
			LYS299	GLU345, LEU396, VAL328, GLU315, MET301,
			ASP407	VAL342, PHE408, MET319, ILE276, TYR346,
			THR406	VAL284, ALA297

Note: Text in bold is the best binding affinity score

4. Conclusion

From all the stages and the results that have been obtained from this research, the following conclusions can be drawn:

- 1. Based on the results of Drugscan testing of 57 Monascus sp. pigment compounds, 12 compounds do not meet Lipisnki's rule of five. Meanwhile, 45 other compounds met the requirements.
- 2. Based on the toxicity test results and the results of the ADME study of 57 Monascus sp. pigment compounds, 34 compounds did not meet the parameters, while 23 other compounds did.
- 3. Based on the results of the docking analysis of the 10 best compounds from Drugscan, the ADME and Toxicity studies seen from the binding affinity value, respectively, show that there were 3 best compounds, compound R3, red Shandong 2, and Monaphilol C, which were -8.74, -

8.16, and -8.14 kcal/mol lower than the comparison compound (-6.44 kcal/mol), which means that the three compounds have better interactions than the comparison compound.

4. Pigment derivative compounds from Monascus sp. are predicted to have better interactions and can be used as anticardiovascular drug candidates: compound R3, red Shandong 2, and monaphilol C.

References

- Aisyah, I. (2014). Hubungan Penggunaan Obat Kardiovaskular terhadap Terjadinya Xerostomia pada Pasien Penyakit Jantung Koroner di RSUD Dr. Pirngadi Medan Universitas Sumatera Utara. Medan.
- Amelia, F. (2013). Modeling struktur protein vaksin H5N1 HA BTB menggunakan I-Tasser. *Jurnal Sainstek*, *7*(1).
- Farahdika, A., & Azam, M. (2015). Faktor Risiko yang Berhubungan dengan Penyakit Jantung Koroner pada Usia Dewasa Madya (41-60 Tahun) (Studi Kasus di RS Umum Daerah Kota Semarang). Unnes Journal of Public Health, 4(2), 117-123. https://doi.org/https://doi.org/10.15294/ujph.v4i2.5188
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Advanced Drug Delivery Reviews*, 23(1), 3-25. https://doi.org/https://doi.org/10.1016/S0169-409X(96)00423-1
- Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev*, *46*(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
- Meiyanto, E. (2012). Docking Kurkumin Dan Senyawa Analognya Pada Reseptor Progesteron: Studi Interaksinya Sebagai Selective Progesterone Receptor Modulators (Sprms). *Pharmacon: Jurnal Farmasi Indonesia UMS*, *13*(2), 55-60. https://doi.org/10.23917/pharmacon.v13i2.10
- Mostafa, M. E., & Abbady, M. S. (2014). Secondary metabolites and bioactivity of the Monascus pigments review article. *Global Journal of Biotechnology and Biochemistry*, 9(1), 1-13. https://doi.org/10.5829/idosi.gjbb.2014.9.1.8268
- Nguyen, T., Karl, M., & Santini, A. (2017). Red Yeast Rice. *Foods*, 6(3), 19. https://doi.org/https://doi.org/10.3390/foods6030019
- Nursamsiar, N., Alprida Tandi, T., & Akbar, A. (2016). Studi in Silico Senyawa Turunan Analog Kalkon Dan Pirimidin Sebagai Antiinflamasi: Prediksi Absorpsi, Distribusi, dan Toksisitas. *Pharmacy: Jurnal Farmasi Indonesia*, *13*(01). https://doi.org/10.30595/pji.v13i1.891
- Pebriana, R. B., Romadhan, A. F., Yunianto, A., & Rokhman, M. R. (2012). Docking Kurkumin dan Senyawa Analognya pada Reseptor Progesteron: Studi Interaksinya sebagai Selective Progesterone Receptor Modulators (SPRMs). *Pharmacon: Jurnal Farmasi Indonesia UMS*, 13(2). http://hdl.handle.net/11617/970
- Prasetia, T. (2011). Simulasi Dinamika Molekul Kompleks Histone Deacetylase (HDAC) Kelas II Homo Sapiens dengan Suberoylanilide Hydroxamic Acid (SAHA) dan Turunannya sebagai Inhibitor Kanker Serviks Universitas Indonesia. Depok.
- Purnomo, H. (2013). *Kimia Komputasi Uji in Silico Senyawa Antikanker* Yogyakarta: Pustaka Pelajar. 25
- Raies, A. B., & Bajic, V. B. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. *Wiley Interdiscip Rev Comput Mol Sci*, 6(2), 147-172. https://doi.org/10.1002/wcms.1240

- Ruswanto, R. (2015). Molecular docking empat turunan isonicotino hydrazide pada mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA). *Jurnal Kesehatan Bakti Tunas Husada: Jurnal Ilmu-ilmu Keperawatan, Analis Kesehatan dan Farmasi, 13.* https://doi.org/10.36465/jkbth.v13i1.25
- Sabidó, M., Thilo, H., & Guido, G. (2019). Long-term effectiveness of bisoprolol in patients with angina: A real-world evidence study. *Pharmacol Res, 139,* 106-112. https://doi.org/10.1016/j.phrs.2018.10.031
- Santoso, B., Utomo, R. S., & Wiyoga, M. D. (2016). Analisis hubungan senyawa golongan flavonoid dari 24 famili tanaman terhadap aktivitas penangkap radikalnya. In: . Prosiding Seminar Nasional Kimia, Universitas Jenderal Achmad Yani, Bandung.
- WHO. (2015). Library Cataloguing Publication Data. Heart: Technical Pacakege for Cardiovaskuler Disease Management in Primary Health Care Switzerland. WHO Press. Retrieved Des 27 from https://who.int/tb/data
- Yuliana, A., Singgih, M., Julianti, E., & Blanc, P. J. (2017). Derivates of azaphilone Monascus pigments. *Biocatalysis and Agricultural Biotechnology*, 9, 183-194. https://doi.org/10.1016/j.bcab.2016.12.014