Main Article Content

Abstract

Some problems with wastewater treatment that often arise are the high cost and complexity of wastewater treatment plants. This condition often causes various environmental problems because of dispossal of wastewater to the water bodies without any proper treatment, for example wastewater from the tapioca industry. Constructed Wetlands are one method of treating wastewater that is easy, inexpensive and has good capabilities. This study examines the ability of wetlands to treat tapioca industry wastewater. The type of reactor that was built in the wetlands used in this study is Free Water Sutface (FWS) in batch system with water hyacinth plants (Eichhornia crassipes). BOD, COD, TSS and Cyanide in tapioca industrial wastewater with several concentrations ranging from 20, 40, 60, 80 and 100% were applied in the current study. While the observation time in this study was 10 days. Samples were taken on days 0, 2, 4, 6, 8 and 10. The results of this study showed that wetlands were able to reduce levels of BOD, COD, TSS and cyanide up to 97.9%, 84.4%, 45.6% and 99.9%, respectively. These results indicate that wetlands built with water hyacinth plants have excellent ability to reduce pollutants in tapioca industry wastewater, so that one alternative can be used to overcome the problem of environmental pollution due to wastewater disposal in Indonesia.

Article Details

References

  1. Irmanto dan Suyata, 2010, Optimasi penurunan nilai bod, cod dan tss limbah cair industri tapioka menggunakan arang aktif dari ampas kopi, Molekul. Vol. 5 No. 1. pp. 22-32.
  2. Fatimah. I., dan Wijaya. K., 2005, Sintesis TiO2 /zeolit sebagai fotokatalis pada pengolahan limbah cair industri tapioka secara adsorpsi-fotodegradasi, Teknoin. Vol. 10. No. 4. pp. 257-267.
  3. Santoso. B., 2010, Proses pengolahan air buangan industri tapioka, Jurnal ilmiah teknologi & rekayasa, Vol. 15 No. 3. pp. 213-220.
  4. Cesaria. R.Y., Wirosoedarmo. R., dan Suharto. B., 2014, Pengaruh penggunaan starter terhadap kualitas fermentasi limbah cair tapioka sebagai alternatif pupuk cair, Jurnal Sumberdaya Alam dan Lingkungan , Vol. 1. No. 2. pp. 8-14.
  5. Mulyani. H., dan Prasadja. M.E., 2014, Study of Chlorination Application in Tapioca Wastewater for Cyanide Removal, Waste Technology, Vol. 2 (2). pp. 41-43.
  6. Zhang. W., Xie. L., Yin. Z., Khanal. S.K., and Zhou. Q., 2016, Biorefinery approach for cassava-based industrial wastes: Current statusand opportunities, Bioresources Technology (215). pp. 50-62.
  7. Nurkemalasri. R., Sutisna. M., dan Wardhani. E., 2013, Fitoremediasi Limbah Cair Tapioka dengan menggunakan Tumbuhan Kangkung Air (Ipomoea aquatica), Reka Lingkungan, Vol. 2. No. 1. pp. 1-12.
  8. Susilo. F.A.P., Suharto. B., dan Susanawati. L.D., 2015, Pengaruh Variasi Waktu Tinggal Terhadap Kadar BOD dan COD Limbah Tapioka dengan Metode Rotating Biological Contactor, Jurnal Sumberdaya Alam dan Lingkungan, Vol. 2. No. 1. pp. 21-26.
  9. Thepubon. T., Choeisai. P., Mungkarndee. P., Choeisai. K., and Syutsubo. K., Effect of suspended solids removal methods on methane production from tapioca starch wastewater, Engineering and Applied Science Research (47) 1. pp. 87-92.
  10. Wardhana. R.K., H.H.D., Mardiah. A., dan Siswoyo. E., 2019, Sintesis biosemikonduktor menggunakanserat nata de cassava dari limbah cair tapioka, Jurnal Sains & Teknologi Lingkungan, Vol. 11. No. 2. pp. 143-154.
  11. Siswoyo. E., Kasam, dan Abdullah. L.M.S., 2011, Penurunan Logam Timbal (Pb) pada Limbah Cair TPA Piyungan Yogyakarta dengan Constructed Wetlands Menggunakan Tumbuhan Eceng Gondok (Eichornia Crassipes), Jurnal Sains & Teknologi Lingkungan. Vol. 3 No. 1. pp. 73-79.
  12. Polprasert. C., 2004, Constructed Wetlands for Wastewater Treatment: Principles and Practices, Wetlands Ecosystems in Asia. Vol. 1. pp 285-310.
  13. Bengtsson. B., and Triet., T., 1994, Tapioca-Starch Wastewater Toxicity Characterized by Microtox and Duckweed Tests, Ambio, Vol. 23 No. 8. pp. 473-477.