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ABSTRACT  
In the Black-Scholes options pricing formulas one parameter that cannot be directly observed is the volatility 

of the stock price. If actual market data of the price V are known, then the volatility can be viewed as unknown and 
can be calculated via the implicit equation ( ), , , , , 0V v S T t K r σ− = . 

The volatility σ plays the role of the unknown parameter. The volatility σ determined in this way is called 
implied volatility and is the root of the equation ( ) ( ), , , , , 0f V v S T t K rσ σ= − = . Iterative methods such as 
Newton’s method, can then be used to find the root. In this work we propose an approach that uses a genetic 
algorithm to find the implied volatility.  
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1. Introduction 

The two types of option contracts that are most 
common are calls and puts. A call is an option to buy, 
and a put is an option to sell. A call option (put option) 
gives the holder the right, but not the obligation, to 
buy from (sell to) the writer a stock at an agreed price 
(known as the exercise price or the strike price), with 
that right lasting until a particular date (known as the 
maturity or the expiration date). The options that can 
be exercised at any time before or on the expiration 
date are called American options. The options that can 
only be exercised at their expiration date are called 
European options. In this work we are particularly 
concern with the European call option. 

If we let ( )S t  denote the stock price at time , t
K  denote the strike price and T  the expiration time, 
then the intrinsic value of the European call option is   

. This is because: if ( )(max ,0S T K− ) ( )S T K> the 

option will be exercised for a profit of ( )S T K− , and 
if ( )S T K≤  the option will not be exercised. Because 
the holder of the call option is not obliged to buy the 
stock, he does not lose any money (in the first case he 
gained money and in the second case he neither gain 
nor lose). In contrast, the writer of the call option will 
not gain any money at the expiration date, and may 
lose an unlimited amount. To compensate for this 
imbalance, when the option is agreed (today) the 
holder of the option would be expected to pay to the 
writer of the option an amount of money as the value 
of the option.  

Options have become so popular that in many 
cases more money is invested in them. At least there 
are two reasons for that (Higham, 2004): 
a. Options are extremely attractive to investors, both 

for speculation and for hedging. 
b. There is a systematic way to determine how much 

they worth, and hence they can be bought and sold 
with some confidence. 

 

Black and Scholes (1973) were the first to 
provide a closed-form solution for the valuation of 
European options. Their theory models the stock price 
as a stochastic process. Using a number of simplifying 
assumptions about the option market and the no-
arbitrage principle in economics, they come up with 
the following formula for the value of a European call 
option: 
 ( ) ( ) ( ) ( )1 2, r T tC S t S N d K e N d− −= −  (0.1) 
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and ( ).N  is the cumulative distribution function for 
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Equation (1.1) says that t call optio
stock which pays no dividends depends on only five 
variables: the stock’s price (S), the strike price (K), the 
time to maturity (T – t), the continuously compounded 
interest rate (r) and the volatility of the stock (σ).  

 
here is a relationship, called put-call parityT

n the value C of a European call option and the 
value P of a European put option with the same strike 
price K and expiration date T. At time 0t = , we have 
 r TC K e P S−+ = +  (0.2) 

ence the pu

The one parameter in the Black-Scholes pricing 
rmu

H tained by using t value may be ob
equation (1.2) and equation (1.1).  
 

fo la (1.1) that can not be directly observed is the 
volatility of the stock. The volatility of a stock is a 
measure of the uncertainty of the return provided by 
the stock. It can be estimated from historical data of 
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the stock price or, in practice, implied from option 
prices observed in the market. In this work we will be 
concern with the latter. For the use of historical data to 
estimate the volatility see for example Hull (2003), 
Higham (2004) and Ross (2003).  
 
2. Implied Volatility 

at the Black-Scholes call and 
put va

We have seen th
lues depend on , , ,S K r T t− and ;σ only the 

stock volatility σ that ca bserv  directly. 
One approach to obtain the volatility is to extract it 
from the observed marked data, that is: given a quoted 
option value, and knowing , , ,S K r t andT , find the 

n not be o ed

σ that leads to this value. Having found σ we may 
 the Black-Scholes formula to value oth r options 

on the same stock. The volatility 
use e

σ computed in this 
way is known as an implied volatili . In this work we 
focus our attention of extracting 

ty
σ from a European 

call option quote. 
Assuming that the parameters and 

are kn ion value as a 
, , ,S K r T t  

own, we can consider the opt
function of σ only and denote it by ( ).C σ  If we are 
given a quoted call value C ∗ , then the problem is to 
find the implied volatilityσ ∗ that solves ( ) .C Cσ ∗=  
Since σ can not be solved explicitly in terms of 

, , ,S K r t and the value of the call option C from the 
1.1), the determination of 

,T
formula ( σ must be 
performed as a root-finding problem for a on-linear 
equation.  

Let’s 

 n

write our non-linear equation for σ ∗ as  
 ( ) ( ) ( )0  where  f f C Cσ σ σ ∗= = − (2.1 ) 

 
everal iterative root-finding techniques for 

non-li

. A Genetic Algorithm approach  
 of algorithms 

 

b. fined according to some 

c. rs of crossover and 

 
Then again step 2 is followed until the condition 

for end
thms have been 

used 

 Algorithm 
to fin

 

S
near equation are available, such as Bisection, 

Secant and Newton’s methods. All the methods begin 
with an initial approximation for the root and generate 
a sequence that converges to a root of the equation, if 
the method is successful. Rapid convergence is 
generally obtained using the Newton’s method which 
requires a good initial approximation of the root. A 
good source and analysis of the use of Newton’s 
method for the calculation of implied volatility are 
Kwok (1999) and Higham (2004). In this work we 
propose the use of a genetic algorithm as a simple 
method for the calculation of implied volatility.  Chen 
and Lee (1997) illustrated and tested the ability of 
Genetic Algorithm to determine the price of European 
Call options 
 
3

Genetic Algorithms are a class
inspired by evolution. These algorithms encode 
solution to a specific problem on a chromosome like 
data structure and apply recombination operators to 
these structures so as to preserve critical information. 
An implement-ation of a Genetic Algorithm begins 
with a population of random chromosome. The 
members of this popula-tion are usually strings of 
zeros and ones. Each string in the population 

corresponds to a chromosome and each binary element 
of the string to a gene. Instead of binary coding, one 
can also consider a real coding. This initial population 
is generated randomly. The chromosomes are then 
evaluated and allocated repro-ductive opportunities in 
such a way that those which represent a better solution 
to the problem are given more chances to reproduce. 
Following are the basic steps in a Genetic Algorithm: 
a. Generate randomly an initial population of

chromosomes. 
Calculate the fitness, de
specified criteria, of all the members of the 
population and select individuals for the 
reproduction process. The fittest are given a 
greater probability of reproducing in propor-tion 
to the value of their fitness. 
Apply the genetic operato
mutation to the selected individuals to create new 
individuals and thus a new generation. Crossover 
exchanges some of the bits (genes) of the two 
chromosomes, whereas mutation inverts any bit(s) 
of the chromosome depending on a probability of 
mutation. Thus a 0 may be changed to a 1 or vice 
versa. 

ing the algorithm is reached.  
Traditionally Genetic Algori
for optimization problems. Among the 

advantages of applying Genetic Algorithms to 
optimization problems is that Genetic Algorithms do 
not have much mathe-matical requirements about the 
optimization problems. Due to their evolutionary 
nature, Genetic Algorithms will search for solution 
without regard to the specific inner workings of the 
problem. Genetic Algorithms can handle any kind of 
objective functions and any kind of constraints (i.e. 
linear or nonlinear) defined on discrete or continuous 
search spaces (Gen and Cheng, 1997). Genetic 
Algorithms can also be used to the root-finding 
problem of transcendental equation as de-monstrated 
by Aggarwal (2003), by first converting the problem 
into an optimization problem. The tech-nique can be 
generalized to the system of non-linear equations. That 
is we can convert the problem of find-ing the roots of 
system of nonlinear equations into a multi-modal 
optimization problem and then used a Ge-netic 
Algorithm to solve the optimization problem and 
hence obtain the roots of the corresponding system of 
nonlinear equations (Sidarto et.al., 2004).  

In this work we use a simple Genetic
d an approximate solution of the nonlinear 

equation expressed by equation (2.1). Binary encoding 
was used to this problem and the fitness function 
chosen was  

( )
( )

1
1

F
f

σ
σ

=
+

 (3.1) 

Hence at the vicinity of the root ( ) 0f σ =  we expect 
on will bthat the value of the fitness functi e close to 1 

and will be a small positive number in the case σ is 
far from the root. Thus our problem of findin  a g
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solution to equation (1.3) initially will be formulated 
as a problem of finding σ that maximizes the function 
( )F σ in equation (3.1). 

 
4. Example 

st example we consider the following 
data ta

t T= =  
 order to compute the B ack-Scholes value fo

As a fir
ken from Ross (2003):  

 30, 34, 0.08,S K r s= = = = 0.2, 0 and 0.25
in y l r C b
equation (1.1), and then using the Genetic Algorithm 
to found the value s . Using equation (1.1) we found 

0.2383C * = . Hence if we consider 0.2383C * =  as 
 for a call option for which

 30, 34, 0.08, 0 and S K r t T= = = =
‘market’ data   

0.25=  
ur problem is to find o s * as a root of equation (2.1). 

m 

nd example the data was taken from 
Higha

first colum

In this problem we have used as Genetic Algorith
parameters: population size = 100, chromosome length 
= 16, probability of (one point) crossover = 0.8, 
probability of mutation = 0.005., maximum number of 
generation = 100. As a result we obtained the implied 
volatility 0.1998s = . 

For the seco
m (2004). This is the data for call options traded 

on the LIFFE as reported in the Financial Times on  
August 22, 2001. The data is for the FTSE 100 index, 
which is an average of 100 stocks quoted on the 
London Stock Exchange. The expiry date for these 
options was December 2001. On August 22, 2001 the 
stock price was 5420.3. The values for r and T were 

0.05r = and 4 /12T =  for the duration of option. 
e 1 shows the eight different 

strike prices and the second column its corresponding 
call option prices. The last column shows the implied 
volatility computed for each of the eight different 
strike prices using Genetic Algorithm with the same 
parameters as used for the first example. 

 

The n of tabl

Table 1.  
rice Option price Implied Volatility Strike p

5125 475 0.1981 
5225 405 0.1960 
5325 340 0.1934 
5425 280.5 0.1903 
5525 226 0.1862 
5625 179.5 0.1833 
5725 139 0.1799 
5825 105 0.1766 

 
Figure 1 shows the implied volatility computed 

for the eight different strike prices as in Table 1. We 
see that the curve is convex in shape, rather than 
straight horizontal line as suggested by the Black-
Scholes formula. If the Black-Scholes formula were 
valid, the volatility would be the same for each strike 
price.   
 

 
Figure 1 

 
5. Conclusion 

An approach to calculate implied volatility 
using a simple Genetic Algorithm was presented. The 
method is easy to implement without using much 
mathematical requirements.  
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