
Seminar Nasional Aplikasi Teknologi Informasi 2010 (SNATI 2010) ISSN: 1907-5022
Yogyakarta, 19 Juni 2010

 E-47

IMPLEMENTATION OF MODEL VIEW CONTROLLER (MVC) ARCHITECTURE
ON BUILDING WEB-BASED INFORMATION SYSTEM

Shofwatul 'Uyun1, Muhammad Rifqi Ma'arif2

1,2Universitas Islam Negeri Sunan Kalijaga
Jl. Marsda Adisucipto No. 1 Yogyakarta 55281

Telp. (0274) 519739, Fax (0274) 540971
E-mail: shofwa_uyun@yahoo.com, muhammad.rifqi@gmail.com

ABSTRAKS
The purpose of this paper is to introduce the use of MVC architecture in web-based information systems
development. MVC (Model-View-Controller) architecture is a way to decompose the application into three
parts: model, view and controller. Originally applied to the graphical user interaction model of input,
processing and output. Expected to use the MVC architecture, applications can be built maintenance of more
modular, rusable, and easy and migrate. We have developed a management system of school fees at the high
school. The developed system uses the MVC (Model-View-Controller Architecture) to provide a description of
how the MVC works and its benefits.

Keywords: web-based information system, MVC, modularity, reusability.

1. INTRODUCTION

In order to be usefull, software, of course has to
interact with something. Sometimes it interacts with
other machine, and more often with people. And to
make the interactions more efficient, it needs some
interfaces. Several web-based applications need
more resources to build an effective and modular
interface. The needed resources above is better than
the process logic of the application’s resources.

 Conventional web-based system, still mixing
the codes between process logic and interfaces. The
interface in the conventional web-based system can
be used in only one process logic. This will reduce
the modularity of applications and make the system
more difficult to maintenance. It is make the
interfaces hard to modified in order to use to the
other applications too (Deacon, 2009). In the
technical code, the server script (PHP, JSP, ASP,
etc.) are still mixed with the presentation (HTML,
WML, JavaScript, etc.).

 The effects above have rise the idea to
separate application logic with the interface. So the
built application can easily replace their interface
any time. In 70's. Inventor of The smaltak's, Trygve
Reenskaug, defined an architecture to resolve this
problems, it called the model-view-controller
architecture. Since that time the MVC design has
become commonplace. The main idea of the
architecture is to separate business logic and
presentation applications

2. MVC (MODEL-VIEW-CONTROLLER)

ARCHITECTURE

Model-View-Controller is a concept introduced
by the inventor of Smalltalk's (Trygve Reenskaug)
to encapsulate data along with its processing

(model) and isolate it from the process of
manipulation (controller) and presentation (look) to
be represented on the User Interface (Deacon,
2009). MVC follows the most common approach of
Layering. Layering is nothing but a logical split up
of our code in to functions in different classes. This
approach is well known and most accepted
approach. The main advantage in this approach is
re-usability of code (Satish, 2004).

 The technical definition of MVC architecture
are divided into three layer (Burbeck, 1992)

a. The model is used to manage information
and notify observers when there was a
change of information. Only models
containing data and functions associated
with processing the data. A model
summarizing more than just data and
functions that operate on it. A model
approach is used to model computer or
abstraction of some real-world process. This
not only captures the state of process or
system, but how the system works. For
example, the programmer can define a
model that bridges the back-end computing
with front-end GUI. In this scenario, the
wraps and abstract model of computation
engine functions and act as a liaison who
request services from the system model.

b. The view is responsible for mapping
graphics onto a device. A view typically has
a one to one correspondence with a display
surface and knows how to render to it. A
view attaches to a model and renders its
contents to the display surface. In addition,
when the model changes, the view
automatically redraws the affected part of
the display to reflect those changes. There
can be multiple view onto the same model

 E-48

and each of these view can render the
contents of the model to a different display
surface.

A controller accepts input from the user and
instructs the model and view to perform actions
based on that input. So that, the controller is
responsible for mapping end-user action to
application’s response. For example, when the user
clicks the button or chooses a menu item, the
controller is responsible to determine how the
application should response.

The model, view and controller are intimately
related and in constant contact. Therefore, they
must reference each other. The picture below
illustrates the basic Model-View-Controller
relationship:

Figure 1. Relation between model, view, and
controller (Gulzar, 2002)

The MVC architecture has the following

benefits (Balani, 2002). The separation between
model and view allows multiple view to use the
same model. Consequently,an application's model
components are easier to implement, test, and
maintain, since all access to the model goes through
these components.

3. SYSTEM DESIGN

To give an idea of how MVC works and its
benefits, we have developed a web-based
information systems to manage the payment of
school fees at a vocational high school. This system
is designed using UML (Unified Modeling
Leanguage). We have described the data model into
class diagram. Class diagram of the developed
system is illustrated in Figure 2.

Figure 2. The data model

Class diagram is a diagram that describes a set
of classes, interfaces, collaborations, and the
relationships between them. Class diagram is a
special type of diagrams and shares the same
general nature as all the diagrams, the names and
graphical content which is the projection to the
model (Booch et al, 1998). From the class diagram
above, we can describe the relationship between the
objects that composed the system. From these
relations, we can get the main structure of the
database that will be used. In MVC architecture,
database access is handled by the model.

User requests and feedback are illustrated by
figure 3. In this figure, the arrow indicates the user's
request and the ellipse shows the system response
to the request. Users make a request through the
graphical interfaces (buttons, links, etc.). The
response is mapped to a graphical interface. User
requests and responses are handled by the
controller. The view are responsible for providing a
graphical interface.

Figure 3. The user requests and its response

4. MVC ARCHITECTURE
IMPLEMENTATION

 E-49

In the developed system, the MVC architecture
is implemented in every application module. Each
module has one model, one controller (divided into
three types of files), and some view. The model
consists of (at least) one file which is responsible
for accessing the data into the database. This file
contains one or more SQL statements. Below is a
sample source model:

Figure 4. The model's code

SQL query above is used for accessing data
from the database, then the query is called in the
controller. To connect between the user interface
and business logic in the data model it needs a
controller. A controller consists of three types of
files. The first file for handling user responses, the
seccond file to handle feedback and the other file to
connect with the model.

Figure 5. The first controller’s code

The source code above illustrates a controller
that is responsible for handling user requests
through a graphical user interface (buttons, links,
etc.). Then the file will create a new object from a
class described in another controller that has the
responsibility to acces the model, source code
below is an example of this controller

Figure 6. The seccond controller's code

 E-50

After the controller receives feedback from the
model, then the controller will select the
appropriate view to display information. The source
code to perform this task are:

Figure 7 . The Controller's Code

A View is responsible for displaying the
information into a graphical interface. One view
must have one controller that handles requests from
users and feedback. The source below is an
example of the view :

Figure 8. The view's code

5. CONCLUSION
From the developed system, we can conclude

that using the MVC architecture to develop web-
based information system can improve modularity
and reusability of the application. It is possible
because the source code become neater and the
separation between business logic and user
interface are more explicit. Finally, by using this
architecture, the complexity of the code in the
software can be significantly reduced. Thereby,
increasing the flexibility and modularity of
software systems.

6. REFFERENCES
Balani, Naveen. (2002). Web services architecture

using MVC style. Retrieved on March 30,
2010 from
Http://www.webifysolutions.com?subject=We
b services architecture using MVC style

Booch, Graddy cs. (1998). The UML User Guide.
USA : Addison Wesley.

Burbeck, Steven. (1992). Application
Programmings in Smaltalk's 80 ™ : How To
Use MVC. Retrieved on March 14, 2010 from
http://st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html.

Deacon, John. (2009). Model-View-
Controller Architecture. Retrieved on
March 13, 2010 from
http://www.jdl.co.uk/briefings/index.html/#m
vc .

Gulzar, Nadir. (2002). Fast track to struts :
what it does and how. Retrieved on
March 30, 2010 from
http://media.techtarget.com/tss/static/articles/c
ontent/StrutsFastTrack/StrutsFastTrack.pdf

Satish. (2004). Model View Controller
(MVC) Architecture. Retrieved
on March 24, 2010 from
http://www.dotnetspider.com/resources/316-
Model-View-Controller-MVC-
architecture.aspx

