
Seminar Nasional Aplikasi Teknologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022

Yogyakarta, 17-18 Juni 2011

TWO MAJOR ISSUES IN DATA GRID REPLICATION PROCESS

Ahmad Raf’ie Pratama
1

1
Department of Informatics, Faculty of Industrial Technology, Islamic University of Indonesia

Jl. Kaliurang Km. 14 Yogyakarta 55501

 Phone. (0274) 895287 ext. 122, Fax. (0274) 895007ext. 148

E-mail: ahmad.rafie@fti.uii.ac.id

ABSTRACT

This paper discusses Data Grid as one of popular application of grid and cloud computing. In Data Grid, data

are replicated among different nodes of the grid to increase the availability and efficiency. There are two main

issues regarding this replication process; how to do the replication (i.e. where and when to do replication) and

how to synchronise all the replicas under heterogeneous database systems in grids to be always consistent. This

paper explains those two major issues as well as some proposed methods and solutions in order to explore the

next problems and challenges on this area. By identifying them, it can be useful to make some improvements in

order to give the best performance on the replication process, and hence can offer a better experience of Data

Grid implementation to the users.

Keyword: Data Grid, replication, replica placement, replica synchronisation

1. INTRODUCTION

1.1 Introduction of Data Grid

Grid is described as a form of distributed

computing technology which ‘coordinates resources

that are not subject to centralized control using

standard, open, general-purpose protocols and

interfaces to deliver nontrivial qualities of service.’

(Foster, What is the Grid? A Three Point Checklist,

2002). In grids, many different people and

organisations share their resources to work together

in a Virtual Organisations with some defined sharing

rules. (Foster, Kesselman, & Tuecke, The Anatomy

of the Grid: Enabling Scalable Virtual

Organizations, 2001). The resources shared over the

grid can be anything, it could be hardware, software,

or even the data stored under the system. Grid offer

great opportunity to join separated computational

resources to work together synchronously and

deliver a huge computational power to the users who

need it. Currently, grids have been implemented

widely in many systems which need large

computational resources with fast processing time.

Grids environment, including the applications

running over the grid is supported by middleware

services from a community-based set of libraries

called Globus Toolkit (Foster, Kesselman, &

Tuecke, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations, 2001).

Since it is a form of distributed computing

technology, grid is then very suitable environment to

deploy a distributed database system. In fact, Data

Grid is now one of popular grid application where

people can deal with ultra-large-scale of data stored,

managed, and processed over many different nodes

inside the grid (Chervenak, Foster, Kesselman,

Salisbury, & Tuecke, 1999).

This paper explains the replication process in

Data Grid, identifies the two major issues on the

replication process itself, and discusses some of

proposed methods in handling these major issues.

The objectives of this research is to explore the next

problems and challenges possibilities on this area,

which in turns can be useful to make some

improvements of current solution alternatives. These

improvements are needed to give the best

performance on the replication process, so it can

offer a better experience of Data Grid

implementation to the users.

1.2 Replication Process in Data Grid

Data Grid is a form of distributed database

management systems implemented in grid

environment. The general architecture of data grid

can be seen in Figure 1. In Data Grid, multiple

database systems stored in different locations are

coordinated and synchronised automatically by Grid

Services and keep its transparency to the users as

well as to the grid applications.

In order to handle a huge amount of data inside a

Data Grid, data replication process as illustrated in

Figure 2 is the most common optimisation method

used widely on the implementation. It gives some

benefits in increasing data availability, reducing

access time, reducing bandwidth consumption, and

also providing load balancing support (Lamehamedi,

Szymanski, Shentu, & Deelman, 2002). In Globus

Toolkit, data replication is supported by the Globus

Replica Catalogue which job is to keep track of all

multiple physical replicas for each logical file inside

the grid. It maintains all mapping between logical

file names and the physical locations (Stockinger,

Samar, Allcock, Foster, Holtman, & Tierney, 2001).

G-92

Seminar Nasional Aplikasi Teknologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022

Yogyakarta, 17-18 Juni 2011

Fig.1. General architecture of data grid.

However, despite the benefit given by replication

to Data Grid, the replication process itself still has

some issues which can affect the performance or

even availability of all services provided by Data

Grid. There are two major problems which will be

discussed further in this paper. The first one is how

to do the replication. In which node replication

should be done, and when. Placing the replica in

appropriate place and time will improve efficiency

by reducing bandwidth consumption and access time

for the user making queries. Therefore, the

performance of a Data Grid will be much influenced

by the replica placement method being used. The

second issue to be solved is regarding

synchronisation between all replicas within Data

Grid.

Furthermore, since the data sets inside Data Grid

are usually not supposed to just be read-only data

but are updateable data instead, thus synchronisation

becomes important to keep all replicas to be always

consistent. Furthermore, this issue should also

consider that Data Grid usually consists of

heterogeneous database systems which cannot talk

to each other directly; there should be a mechanism

provided to translate between different SQL dialects

used by different database systems. These two

issues currently can be considered as major issues to

be solved regarding the replication process within

Data Grid in order to give a better performance to

the users (i.e. high availability rate, low latencies,

and high efficiency).

Fig.2. Illustration of replication process

2. REPLICATION METHODS

There are some methods proposed by some

researchers to overcome the two major issues of

replication process within Data Grid. Some of them

will be discussed further on the other sections below.

2.1 Replica Placement Algorithm

Data Replication process needs a Replica

Placement Algorithm in deciding where and when to

do replication, as illustrated in Figure 3. In general,

replica placement algorithms can be divided into two

categories; static and dynamic. In static algorithm,

the decision on where and when to create replica(s)

is made by considering certain factors which are

expected may reduce the access time or give the

lowest cost, anything which can improve the

performance of Data Grid overall. Meanwhile,

dynamic algorithm uses more sophisticated

considerations depending on some conditions in

making the decisions; therefore the decisions may

vary for each different time. Dynamic replica

placement algorithms can deliver better performance

compare to the static ones since it includes more

factors and do not stick on one rule only. However,

static replica placement algorithms which are much

simpler can benefit from fast decision making since

there are not many things to be considered.

Lamehamedi et al. (2002) proposed an algorithm

which will create replicas at nodes with high number

of request. It uses local replica indices containing

file information maintained in all nodes. While the

list of all replica locations is contained in global

replica index maintained in the set root. On the other

hand, Naseera and Murthy (2009) used agent-based

system model on deciding which site is the best for

the placement of a new replica. The agent will

consider some resource factors (i.e. Baud-Rate

between sites, CPU Rating, CPU Load, Site Storage

Capacity, and Local Demand of the replicas at each

site) which affect data transmission time between the

sites in making the decision.

There are also some dynamic replication strategy

have been proposed so far. Lie et al. (2006)

G-93

Seminar Nasional Aplikasi Teknologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022

Yogyakarta, 17-18 Juni 2011

proposed an algorithm called MinDmr Optimizer

which addressed to overcome limited replica storage

problem in maximising data availability by

minimising the data missed rate. Meanwhile, Sashi

and Thanamani (2010) proposed dynamic replica

creation algorithm which consists of two stages;

determining which file to be replicated and then

calculating the number of copies to be replicated.

This algorithm uses Access Frequency to identify

popular files and divide it with average Access

Frequency of all other files to determine the number

of replicas to be created. Afterwards, this algorithm

will place a replica in site with low placement cost

which can be calculated from the number of request

made for the particular file and the response time.

On the other hand, Abdullah et al (2008)

proposed some decentralised replication strategies

which are addressed for Peer-to-Peer (P2P) based

Data Grid; Path and Requestor Node Placement

Strategy and N-hop Neighbour Node Placement

Strategy. The first strategy will create replicas on the

requestor node and all nodes along the path between

the requestor node and the provider node once a

search succeeds. Meanwhile, the second strategy

will create replicas on all neighbours of the provider

node within N-hop range.

Fig.3. Illustration of replica placement decision

Overall, there are many kinds of replica

placement algorithm have been proposed so far.

There are static and dynamic algorithms, centralised

and decentralised algorithms, and there are also

some algorithms developed to work on specific

topology of Data Grid, for example P2P topology.

Nevertheless, all of them have one similarity; they

have one goal of increasing the performance of Data

Grid by considering various factors and using

different strategies.

2.2 Replica Synchronisation Algorithm

Replication is undoubtedly a useful method of

improving the performance of distributed database

system, including Data Grid. However, replication

introduces another issue when we need to update the

database. By having some replicas of a file means

that any updates occur to any files should be

followed by updating all the replicas as well.

Otherwise, there will be inconsistency issue of the

service given by the Data Grid. Therefore,

replication should always be followed by replica

synchronisation service as can be seen on Figure 4.

Fig.4. Illustration of replica synchronisation process

There are two basic replica synchronisation

strategies in managing distributed database; Strict

Synchronisation and Lazy Synchronisation (Ozsu &

Valduriez, 1999). Strict means the consistency

should be well-maintained; any updates on a single

file should be always followed by updating all the

replicas immediately, it is also called Synchronous

algorithm. Meanwhile, in Lazy or Asynchronous

algorithm, any updates happened on any file will be

propagated to the replicas after certain periods of

time.

Currently, there are some methods have been

proposed in replica synchronisation on Data Grid.

One of the popular ones is CONStanza (Pucciani,

Domenici, Donno, & Stockinger, 2010). This

method is built based on optimistic or lazy

algorithm. The architecture of CONStanza consists

of Global Replica Consistency Service (GRCS) as

the core server with its Replica Consistency

Catalogue (RCC) in master site and some Local

Replica Consistency Services (LRCSs) with their

Local Replica Consistency Catalogues (LRCCs) in

slave sites. GRCS maintains all the information

regarding update processes and dispatches update

requests to LRCSs. Meanwhile, LRCSs are charged

to maintain the slave databases on their local sites;

update requests are received from either GRCS or

their DBUpdater in their own local site.

The other model has been proposed is called

RUPAGATION (Ciglan & Hluchy, 2007). In this

model, synchronisation service is done by Replica

Update Propagation (RUP) Service which is broken

down into several modules; Update Construction

Module (UCM) which will catch any update

statements and construct update statement sets

which will be propagated later to the other servers,

Update Applier Module (UAM) which will do pre-

processing of any incoming update sets from other

servers and then apply it on its data resource, Update

Transfer Module (UTM) which is responsible on

G-94

Seminar Nasional Aplikasi Teknologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022

Yogyakarta, 17-18 Juni 2011

transferring update sets between sites, and Replica

Update Manager Module which will act as the

manager of all previous modules. On the upper layer

of RUP, there is Replica Consistency Service (RCS)

as the environment of replica consistency policy

implementation from the user.

These two methods use different strategies on

handling replica synchronisation on Data Grid.

However, both of them focus on delivering

consistency of all the replicas in certain degree. In

term of heterogeneity support, CONStanza uses a

translation module based on a parser included within

DBWatcher component, while RUPAGATION use

only standard SQL statements when doing

synchronisation with help of integration of external

SQL dialect translation module.

3. IMPLEMENTATION
In order to overcome the two major issues of

replication process within Data Grid, there are

several different methods have been proposed by

researchers which will be discussed further below.

3.1 Replica Placement Implementation
Different approaches of replica placement

implementation may give different decisions on

where and when to create replica(s). It depends on

what factor to be considered as the most important

factor which can benefit users and give them the best

experience using the Data Grid. Simulation by

Lamehamedi et al. (2002) showed that their

algorithm gives better performance when replicas

are created closer to the users with larger file size

which may offer up to 12% improvement in matter

of response time. This simulation was done by

comparing three scenarios of data replications on

two-tier tree topology; without replication,

replication at intermediate nodes, and replication at

lower level nodes. Each scenario was processing

eight different file sizes ranging from 100MB up to

1GB.

Another simulation by Naseera and Murthy

(2009) showed that their algorithm suggested Site1

of 10 Sites used in their simulation as the best

candidate of replica placement site based on lowest

aggregated execution time test compared to the other

sites. However, when it comes to data availability

test, the algorithm suggested Site 7 which offers

lowest aggregated data transmission time compared

to the other sites, even to Site 1. Therefore, they

used weighting factor in making the decision which

can be selected by the users depends on their need.

In that case, when users concern more in execution

time, they will get the replication done on Site 1,

while Site 7 will be the place of replication if they

concern more in file transmission through the

network.

In short words, replication was proven to give

better performance to the Data Grid. However, users

should know their requirement and pick the most

suitable approach with also some adjustment to give

them more benefit since inappropriate approach may

result in small improvement which is not significant

enough to them.

3.2 Replica Synchronisation Implementation

Both CONStanza and RUPAGATION used

different methods on measuring their performance

on the implementation step; CONStanza used

measuring of the time (milliseconds) needed to

perform synchronisation of 1, 10, 100, and 1000

updates within five different sites, while

RUPAGATION used comparison of the time needed

for updating 1000 files in both non-replicated system

and replicated system which includes

synchronisation to keep all replicas to be consistent.

Furthermore, while CONStanza have been

implemented in several Data Grid systems so far,

RUPAGATION still used a prototype model on the

implementation step.

In addition, based on a simulation using

CONStanza, four distributed MySQL slave

databases were successfully synchronised with an

Oracle master database within no more than 12

seconds for 1000 of updates. This synchronisation

time is majorly constituted from the update file

creation step (Pucciani, Domenici, Donno, &

Stockinger, 2010). Meanwhile, in a simulation of

updating 1000 files using RUPAGATION with two

replica sources, the synchronisation took up to 14.5

times more time compare to the time of updating

1000 non-replicated files (Ciglan & Hluchy, 2007).

Regarding heterogeneity support, RUPAGATION

was proven to support more SQL dialects including

XML databases, it has been tested by using three

kinds of database systems; MySQL, PostgreSQL,

and eXist. Meanwhile, CONStanza was only

implemented to work with two types of relational

databases systems; Oracle and MySQL.

Nevertheless, both methods have similarity on

the need of some improvement, primarily in

handling larger sets of database, having more than

1000 updates at a single time. This improvement is

urgent since in real applications, Data Grid will have

ultra large size of database with millions of records

and replicas, thus give high possibility of having big

number of updates within shot timeframe.

4. CONCLUSION

4.1 Identified Major Issues

Replication is very popular optimisation method

in Data Grid. It can increase the availability of the

data needed by users. However, replication also

introduces two major issues which can reduce the

performance of the Data Grid instead of increases it.

The first issue is regarding how to do the replication,

and the second one is on synchronising all the

replicas to keep them in consistency.

G-95

Seminar Nasional Aplikasi Teknologi Informasi 2011 (SNATI 2011) ISSN: 1907-5022

Yogyakarta, 17-18 Juni 2011

Replica placement algorithm is needed in

deciding where and when to create replicas. There

are some algorithms using various methods being

used so far. They include some different parameters

to make some calculations in making the decisions.

It can be a centralised method or a decentralised

method. All of them have the same goal; creating

replica on appropriate place(s) and time so the

replication will be done effectively, increase the

availability rate, reducing access time, and therefore

improve the performance of the Data Grid.

Replication also introduces another issue when

there is a need of data updating. Having more than

one replica means that any update occurs to a single

file should be followed by updating all other replicas

as well. Replica synchronisation mechanism is

needed to keep all these replicas in consistency.

Synchronisation in Data Grid should consider some

factors, e.g. the large size and/or number of

databases, and also the heterogeneity of database

systems. CONStanza and RUPAGATION are two

methods of replication synchronisation developed

for Data Grid. Both of them use different strategies

and have different capabilities, CONStanza offers

better performance while RUPAGATION has more

feature and wider support in term of heterogeneity.

4.2 Future Research Opportunity

Although there are many methods have been

proposed to handle those two major issues on Data

Grid, there are still many chances to make some

improvements on these methods. In term of replica

placement, one of the chances is on how to get a

better performance of Data Grid by inventing new

method of replication which can increase availability

rate at the lowest cost. On the other hand,

CONStanza and RUPAGATION have succeeded in

providing a good service in term of replica

synchronisation. However, these two methods still

need to be improved further, particularly in term of

scalability; how to deal with much larger database

query without suffering much from low performance

& slower speed of access time.

REFERENCES

Abdullah, A., Othman, M., Ibrahim, H., Sulaiman,

M., & Othman, A. (2008). Decentralized

replication strategies for P2P based Scientific

Data Grid. Information Technology, 2008. ITSim

2008. International Symposium on (pp. 1-8).

Kuala Lumpur: IEEE Computer Society.

Chervenak, A., Foster, I., Kesselman, C., Salisbury,

C., & Tuecke, S. (1999). The Data Grid:

Towards an Architecture for the Distributed

Management and Analysis of Large Scienti.

Journal of Network and Computer Applications,

187-200.

Ciglan, M., & Hluchy, L. (2007). Content

Synchronization in Replicated Grid Database

Resources. Third International IEEE Conference

on Signal-Image Technologies and Internet-

Based System (pp. 379-386). Shanghai: IEEE

Computer Society.

Dullmann, D., Hoschek, W., Jaen-Martinez, J.,

Segal, B., Samar, A., Stockinger, H., et al.

(2001). Models for Replica Synchronisation and

Consistency in a Data Grid. Proceedings of the

10th IEEE International Symposium on High

Performance Distributed Computing (pp. 67-75).

San Francisco: IEEE Computer Society.

Foster, I. (2002, July). What is the Grid? A Three

Point Checklist.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The

Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of High

Performance Computing Applications, 15(3),

200-222.

Lamehamedi, H., Szymanski, B., Shentu, Z., &

Deelman, E. (2002). Data Replication Strategies

in Grid Environments. Algorithms and

Architectures for Parallel Processing, 2002.

Proceedings. Fifth International Conference on

(pp. 378-383). Beijing: IEEE Computer Society.

Lei, M., Vrbsky, S. V., & Hong, X. (2006). A

Dynamic Data Grid Replication Strategy to

Minimize the Data Missed. Broadband

Communications, Networks and Systems, 2006.

BROADNETS 2006. 3rd International

Conference on (pp. 1-10). San Jose: IEEE

Computer Society.

Naseera, S., & Murthy, K. (2009). Agent Based

Replica Placement in a Data Grid Environement.

Computational Intelligence, Communication

Systems and Networks, 2009. CICSYN '09. First

International Conference on (pp. 426-430).

Indore: IEEE Computer Society.

Ozsu, M. T., & Valduriez, P. (1999). Principles of

Distributed Database Systems. New Jersey:

Prentice-Hall, Inc.

Pucciani, G., Domenici, A., Donno, F., &

Stockinger, H. (2010). A Performance Study on

the Synchronisation of Heterogeneous Grid

Database using CONStanza. Future Generation

Computer System, 820-834.

Sashi, K., & Thanamani, A. (2010). A New Replica

Creation and Placement Algorithm for Data Grid

Environment. Data Storage and Data

Engineering (DSDE), 2010 International

Conference on (pp. 265-269). Bangalore: IEEE

Computer Society.

Stockinger, H., Samar, A., Allcock, B., Foster, I.,

Holtman, K., & Tierney, B. (2001). File and

Object Replication in Data Grids. High

Performance Distributed Computing, 2001.

Proceedings. 10th IEEE International

Symposium on (pp. 76-86). San Fransisco: IEEE

Computer Society.

G-96

