Main Article Content

Abstract

Penggunaan model klasifikasi pola secara klasik akan cukup sulit diterapkan apabila suatu pola dimungkinkan untuk menjadi anggota dari 2 kelas atau lebih. Pada masalah klasifikasi kualitas produk, kondisi semacam ini seringkali muncul terutama dalam menentukan apakah suatu produk termasuk dalam kualitas BAIK, CUKUP, atau BURUK. Pendekatan fuzzy neural network dimungkinkan untuk dapat menfakomodasi permasalah tersebut. Pada penelitian ini akan memperkenalkan fuzzy backpropagation untuk menentukan kualitas produk. Fuzzy backpropagation menggunakan derajat keanggotaan pada neuron output sebagai target pembelajaran. Kualitas suatu produk digolongkan menjadi 3 golongan, yaitu Kualitas-1 (BAIK), Kualitas-2 (CUKUP), dan Kualitas-3 (BURUK). Baik tidaknya kualitas produk dipengaruhi oleh 3 komponen, yaitu penyusutan volume, kenaikan derajat keasaman, dan cacat kemasan. Ada 27 pola data yang akan dilatih. Jaringan syaraf yang digunakan adalah backpropagation levenberg marquardt, dengan 1 lapisan tersembunyi dan 10 neuron pada lapisan tersembunyi, maksimum epoh = 10000, toleransi error = 10-6, laju pembelajaran = 1. Hasil pelatihan memberikan MSE sebesar 9,854 x 10-7 dan koefisien korelasi antara output jaringan dan target output sebesar 1.
Kata kunci: fuzzy, backpropagation, klasifikasi.

Article Details