Main Article Content

Abstract

Dalam Penelitian ini, pendekatan yang digunakan algoritma neural network untuk memprediksi akurasi pengujian perangkat lunak metode black-box. Pengujian perangkat lunak metode black-box merupakan pendekatan pengujian dimana datates berasal dari persyaratan fungsional yang ditentukan tanpa memperhatikan struktur program akhir, dan teknik yang digunakan yaitu equivalence partitioning.
Teknik dari penelitian ini, sistem informasi akademik menjadi test case, test case ini kemudian dilakukan pengujian black-box, dari pengujian black-box didapat dataset, kemudian dataset ini dilakukan pengukuran tingkat akurasi dalam hal memprediksi output realitas dan output prediction, selanjutnya tahapan terkahir dilakukan perhitungan error, RMSE dari output realitas dan output prediction.
Hasil dari penelitian ini didapat model tingkat akurasi prediksi, yaitu: 85%(4 hidden layer, epoch=900, learning rate=0,1) , 99%(4 hidden layer, epoch=1000, learning rate=0,1), dan 80%(5 hidden layer, epoch=1000, learning rate=0,1), dan model desain training neural network yang paling akurat adalah dengan 4 hidden layer, epoch=1000, learning rate=0,1 dengan tingkat akurasi 99%.

Article Details