Main Article Content

Abstract

Waste of tea is still limited in terms of utilization, potentially to be made into nanocarbon. In this research, nanocarbon synthesis from the waste of tea through carbonation method using furnace and purification with HNO3 with activator substance used is H3PO4. The specific objective of this study was to determine the optimal levels and ratios of ortho-phosphoric acid and to determine the properties and characteristics of nanocarbon from tea waste. Based on the FT-IR spectra, the best ortho-phosphate acid levels and ratios are 50% and 1:2 (w/w) H3PO4. The XRD analysis showed that the activated carbon dregs obtained were C graphite which was characterized by the diffraction peak at 2theta: 26.2°; 26.5°; 42.2°; 42.4°; and 44.3°. Based on the TEM image obtained shows that the activated carbon of the resulting tea waste has a particle size of 20-40 nm.

Keywords

Activated carbon nanocarbon ortho-phosphoric acid tea waste

Article Details

How to Cite
Wijaya, D. R. P., Martono, Y., & Riyanto, C. A. (2019). Synthesis and Characterization of Nano Activated Carbon Tea Waste (Camellia sinensis L.) Viewed from the Content and Ratio of Orthophosphoric Acid. INDONESIAN JOURNAL OF CHEMICAL RESEARCH, 3(2), 49–58. https://doi.org/10.20885//ijcr.vol3.iss2.art2

References

  1. Adinata, M.R., 2013. Pemanfaatan Limbah Kulit Pisang Sebagai Karbon Aktif. Universitas Pembangunan Nasional “Veteranâ€, Jawa Timur.
  2. Ahmaruzzaman, M., Laxmi Gayatri, S., 2010. Activated Tea waste as a potential Low cost adsorbent for the removal of p-Nitrophenol from wastewater. J. Chem.Eng.Data 55, 4614–4623. https://doi.org/10.1021/je100117s
  3. Fitria, V., Tjahjani, S., 2016. DARI TEMPURUNG KELUWAK ( Pangium edule ) DENGAN AKTIVATOR H 3 PO 4, in: Pembuatan Dan Karakterisasi Karbon Aktif Dari Tempurung Keluwak (Pangium Edule) Dengan Aktivator H3PO4. Jurusan Kimia FMIPA Universitas Negeri Surabaya, pp. 7–12.
  4. Girgis, B.S., Temerk, Y.M., Gadelrab, M.M., Abdullah, I.D., 2007. X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon Lett. 8, 95–100. https://doi.org/10.5714/CL.2007.8.2.095
  5. Güler, Ö., Boyrazlı, M., Başgöz, Ö., Bostancı, B., 2017. The synthesis of carbon nanostructures from tea plant wastes. Can. Metall. Q. 56, 349–359. https://doi.org/10.1080/00084433.2017.1345467
  6. Hartini, Hidayat, Y., Mudjijono, 2015. Study Pore Characterization of γ-Alumina – Activated Carbon Composite made of Cassava Peels (Manihot esculenta Cranz). ALCHEMY 11, 47–57. https://doi.org/10.20961/alchemy.v11i1.106
  7. Mahvi, A.H., Naghipour, D., Vaezi, F., Nazmara, S., 2005. Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters. Am. J. Appl. Sci. 2, 372–375. https://doi.org/10.3844/ajassp.2005.372.375
  8. Manullang, S.P., 2010. Pengaruh Pemberian Ampas Teh (Camellia sinensis) dalam Pakan terhadap Analisis Usaha Domba Lokal Jantan Lepas Sapih selama 3 Bulan Penggemukan. Universitas Sumatra Utara, Medan.
  9. Najma, 2012. Pertumbuhan nanokarbon menggunakan karbon aktif dari limbah kulit pisang dengan metode pirolisis sederhana dan dekomposisi metana. Universitas Indonesia, Depok.
  10. Nasri, N.S., Basri, H., Garba, A., Hamza, U.D., Mohammed, J., Murtala, A.M., 2015. Synthesis and Characterization of Low-cost Porous Carbon from Palm Oil Shell via K2CO3 Chemical Activation Process. Appl. Mech. Mater. 735, 36–40. https://doi.org/10.4028/www.scientific.net/AMM.735.36
  11. Pari, G., Santoso, A., Hendra, D., Buchari, B., Maddu, A., Rachmat, M., Harsini, M., Heryanto, T., Darmawan, S., 2013. Karakterisasi Struktur Nano Karbon Dari Lignosellulosa. J. Penelit. Has. Hutan 31, 75–91. https://doi.org/10.20886/jphh.2013.31.1.75-91
  12. Sahara, E., Sulihingtyas, W.D., Mahardika, I.P.A.S., 2017. Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes erecta) yang Diaktivasi dengan H3PO4. J. Kim. 11, 1–9.
  13. Sastrohamidjojo, H., 2001. Dasar-Dasar Spektroskopi, 2nd ed. Liberty Yogyakarta, Yogyakarta.
  14. Shamsuddin, M.S., Yusoff, N.R.N., Sulaiman, M.A., 2016. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 19, 558–565. https://doi.org/10.1016/j.proche.2016.03.053
  15. Subagio, A., Pardoyo, Priyono, Yudianti, R., Rowi, K., Taufiq, M.I., 2013. Pemurnian Carbon Nanotubes menggunakan Larutan HNO3 dengan metode Pencucian Biasa dan Reflux. J. Fis. Indones. XVII, 1–4.
  16. Syaifudin, L.N., 2013. Pemanfaatan Limbah Sayur-Sayuran untuk Pembuatan Kompos dengan Penambahan Air Kelapa (Cocos nucifera) dan Ampas Teh Sebagai Pengganti Pupuk Kimia Pada Pertumbuhan Tanaman Semangka(Citrullus vulgaris L ). Universitas Muhammadiyah Surakarta.
  17. Tutuş, A., Kazaskeroğlu, Y., çiçekler, M., 2015. Evaluation of tea wastes in usage pulp and paper production. BioResources 10, 5395–5406. https://doi.org/10.15376/biores.10.3.5395-5406
  18. Wibowo, S., Syafi, W., Pari, G., 2011. Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. Makara, Teknol. 15, 17–24.
  19. Xu, Y.J., Weinberg, G., Liu, X., Timpe, O., Schlögl, R., Su, D.S., 2008. Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon. Adv. Funct. Mater. 18, 3613–3619. https://doi.org/10.1002/adfm.200800726