Main Article Content
Abstract
Waste of tea is still limited in terms of utilization, potentially to be made into nanocarbon. In this research, nanocarbon synthesis from the waste of tea through carbonation method using furnace and purification with HNO3 with activator substance used is H3PO4. The specific objective of this study was to determine the optimal levels and ratios of ortho-phosphoric acid and to determine the properties and characteristics of nanocarbon from tea waste. Based on the FT-IR spectra, the best ortho-phosphate acid levels and ratios are 50% and 1:2 (w/w) H3PO4. The XRD analysis showed that the activated carbon dregs obtained were C graphite which was characterized by the diffraction peak at 2theta: 26.2°; 26.5°; 42.2°; 42.4°; and 44.3°. Based on the TEM image obtained shows that the activated carbon of the resulting tea waste has a particle size of 20-40 nm.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Adinata, M.R., 2013. Pemanfaatan Limbah Kulit Pisang Sebagai Karbon Aktif. Universitas Pembangunan Nasional “Veteranâ€, Jawa Timur.
- Ahmaruzzaman, M., Laxmi Gayatri, S., 2010. Activated Tea waste as a potential Low cost adsorbent for the removal of p-Nitrophenol from wastewater. J. Chem.Eng.Data 55, 4614–4623. https://doi.org/10.1021/je100117s
- Fitria, V., Tjahjani, S., 2016. DARI TEMPURUNG KELUWAK ( Pangium edule ) DENGAN AKTIVATOR H 3 PO 4, in: Pembuatan Dan Karakterisasi Karbon Aktif Dari Tempurung Keluwak (Pangium Edule) Dengan Aktivator H3PO4. Jurusan Kimia FMIPA Universitas Negeri Surabaya, pp. 7–12.
- Girgis, B.S., Temerk, Y.M., Gadelrab, M.M., Abdullah, I.D., 2007. X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon Lett. 8, 95–100. https://doi.org/10.5714/CL.2007.8.2.095
- Güler, Ö., Boyrazlı, M., Başgöz, Ö., Bostancı, B., 2017. The synthesis of carbon nanostructures from tea plant wastes. Can. Metall. Q. 56, 349–359. https://doi.org/10.1080/00084433.2017.1345467
- Hartini, Hidayat, Y., Mudjijono, 2015. Study Pore Characterization of γ-Alumina – Activated Carbon Composite made of Cassava Peels (Manihot esculenta Cranz). ALCHEMY 11, 47–57. https://doi.org/10.20961/alchemy.v11i1.106
- Mahvi, A.H., Naghipour, D., Vaezi, F., Nazmara, S., 2005. Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters. Am. J. Appl. Sci. 2, 372–375. https://doi.org/10.3844/ajassp.2005.372.375
- Manullang, S.P., 2010. Pengaruh Pemberian Ampas Teh (Camellia sinensis) dalam Pakan terhadap Analisis Usaha Domba Lokal Jantan Lepas Sapih selama 3 Bulan Penggemukan. Universitas Sumatra Utara, Medan.
- Najma, 2012. Pertumbuhan nanokarbon menggunakan karbon aktif dari limbah kulit pisang dengan metode pirolisis sederhana dan dekomposisi metana. Universitas Indonesia, Depok.
- Nasri, N.S., Basri, H., Garba, A., Hamza, U.D., Mohammed, J., Murtala, A.M., 2015. Synthesis and Characterization of Low-cost Porous Carbon from Palm Oil Shell via K2CO3 Chemical Activation Process. Appl. Mech. Mater. 735, 36–40. https://doi.org/10.4028/www.scientific.net/AMM.735.36
- Pari, G., Santoso, A., Hendra, D., Buchari, B., Maddu, A., Rachmat, M., Harsini, M., Heryanto, T., Darmawan, S., 2013. Karakterisasi Struktur Nano Karbon Dari Lignosellulosa. J. Penelit. Has. Hutan 31, 75–91. https://doi.org/10.20886/jphh.2013.31.1.75-91
- Sahara, E., Sulihingtyas, W.D., Mahardika, I.P.A.S., 2017. Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes erecta) yang Diaktivasi dengan H3PO4. J. Kim. 11, 1–9.
- Sastrohamidjojo, H., 2001. Dasar-Dasar Spektroskopi, 2nd ed. Liberty Yogyakarta, Yogyakarta.
- Shamsuddin, M.S., Yusoff, N.R.N., Sulaiman, M.A., 2016. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 19, 558–565. https://doi.org/10.1016/j.proche.2016.03.053
- Subagio, A., Pardoyo, Priyono, Yudianti, R., Rowi, K., Taufiq, M.I., 2013. Pemurnian Carbon Nanotubes menggunakan Larutan HNO3 dengan metode Pencucian Biasa dan Reflux. J. Fis. Indones. XVII, 1–4.
- Syaifudin, L.N., 2013. Pemanfaatan Limbah Sayur-Sayuran untuk Pembuatan Kompos dengan Penambahan Air Kelapa (Cocos nucifera) dan Ampas Teh Sebagai Pengganti Pupuk Kimia Pada Pertumbuhan Tanaman Semangka(Citrullus vulgaris L ). Universitas Muhammadiyah Surakarta.
- Tutuş, A., Kazaskeroğlu, Y., çiçekler, M., 2015. Evaluation of tea wastes in usage pulp and paper production. BioResources 10, 5395–5406. https://doi.org/10.15376/biores.10.3.5395-5406
- Wibowo, S., Syafi, W., Pari, G., 2011. Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. Makara, Teknol. 15, 17–24.
- Xu, Y.J., Weinberg, G., Liu, X., Timpe, O., Schlögl, R., Su, D.S., 2008. Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon. Adv. Funct. Mater. 18, 3613–3619. https://doi.org/10.1002/adfm.200800726
References
Adinata, M.R., 2013. Pemanfaatan Limbah Kulit Pisang Sebagai Karbon Aktif. Universitas Pembangunan Nasional “Veteranâ€, Jawa Timur.
Ahmaruzzaman, M., Laxmi Gayatri, S., 2010. Activated Tea waste as a potential Low cost adsorbent for the removal of p-Nitrophenol from wastewater. J. Chem.Eng.Data 55, 4614–4623. https://doi.org/10.1021/je100117s
Fitria, V., Tjahjani, S., 2016. DARI TEMPURUNG KELUWAK ( Pangium edule ) DENGAN AKTIVATOR H 3 PO 4, in: Pembuatan Dan Karakterisasi Karbon Aktif Dari Tempurung Keluwak (Pangium Edule) Dengan Aktivator H3PO4. Jurusan Kimia FMIPA Universitas Negeri Surabaya, pp. 7–12.
Girgis, B.S., Temerk, Y.M., Gadelrab, M.M., Abdullah, I.D., 2007. X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon Lett. 8, 95–100. https://doi.org/10.5714/CL.2007.8.2.095
Güler, Ö., Boyrazlı, M., Başgöz, Ö., Bostancı, B., 2017. The synthesis of carbon nanostructures from tea plant wastes. Can. Metall. Q. 56, 349–359. https://doi.org/10.1080/00084433.2017.1345467
Hartini, Hidayat, Y., Mudjijono, 2015. Study Pore Characterization of γ-Alumina – Activated Carbon Composite made of Cassava Peels (Manihot esculenta Cranz). ALCHEMY 11, 47–57. https://doi.org/10.20961/alchemy.v11i1.106
Mahvi, A.H., Naghipour, D., Vaezi, F., Nazmara, S., 2005. Teawaste as An Adsorbent for Heavy Metal Removal from Industrial Wastewaters. Am. J. Appl. Sci. 2, 372–375. https://doi.org/10.3844/ajassp.2005.372.375
Manullang, S.P., 2010. Pengaruh Pemberian Ampas Teh (Camellia sinensis) dalam Pakan terhadap Analisis Usaha Domba Lokal Jantan Lepas Sapih selama 3 Bulan Penggemukan. Universitas Sumatra Utara, Medan.
Najma, 2012. Pertumbuhan nanokarbon menggunakan karbon aktif dari limbah kulit pisang dengan metode pirolisis sederhana dan dekomposisi metana. Universitas Indonesia, Depok.
Nasri, N.S., Basri, H., Garba, A., Hamza, U.D., Mohammed, J., Murtala, A.M., 2015. Synthesis and Characterization of Low-cost Porous Carbon from Palm Oil Shell via K2CO3 Chemical Activation Process. Appl. Mech. Mater. 735, 36–40. https://doi.org/10.4028/www.scientific.net/AMM.735.36
Pari, G., Santoso, A., Hendra, D., Buchari, B., Maddu, A., Rachmat, M., Harsini, M., Heryanto, T., Darmawan, S., 2013. Karakterisasi Struktur Nano Karbon Dari Lignosellulosa. J. Penelit. Has. Hutan 31, 75–91. https://doi.org/10.20886/jphh.2013.31.1.75-91
Sahara, E., Sulihingtyas, W.D., Mahardika, I.P.A.S., 2017. Pembuatan dan Karakterisasi Arang Aktif dari Batang Tanaman Gumitir (Tagetes erecta) yang Diaktivasi dengan H3PO4. J. Kim. 11, 1–9.
Sastrohamidjojo, H., 2001. Dasar-Dasar Spektroskopi, 2nd ed. Liberty Yogyakarta, Yogyakarta.
Shamsuddin, M.S., Yusoff, N.R.N., Sulaiman, M.A., 2016. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 19, 558–565. https://doi.org/10.1016/j.proche.2016.03.053
Subagio, A., Pardoyo, Priyono, Yudianti, R., Rowi, K., Taufiq, M.I., 2013. Pemurnian Carbon Nanotubes menggunakan Larutan HNO3 dengan metode Pencucian Biasa dan Reflux. J. Fis. Indones. XVII, 1–4.
Syaifudin, L.N., 2013. Pemanfaatan Limbah Sayur-Sayuran untuk Pembuatan Kompos dengan Penambahan Air Kelapa (Cocos nucifera) dan Ampas Teh Sebagai Pengganti Pupuk Kimia Pada Pertumbuhan Tanaman Semangka(Citrullus vulgaris L ). Universitas Muhammadiyah Surakarta.
Tutuş, A., Kazaskeroğlu, Y., çiçekler, M., 2015. Evaluation of tea wastes in usage pulp and paper production. BioResources 10, 5395–5406. https://doi.org/10.15376/biores.10.3.5395-5406
Wibowo, S., Syafi, W., Pari, G., 2011. Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. Makara, Teknol. 15, 17–24.
Xu, Y.J., Weinberg, G., Liu, X., Timpe, O., Schlögl, R., Su, D.S., 2008. Nanoarchitecturing of Activated Carbon: Facile Strategy for Chemical Functionalization of the Surface of Activated Carbon. Adv. Funct. Mater. 18, 3613–3619. https://doi.org/10.1002/adfm.200800726