Main Article Content
Abstract
The simple harmonic oscillator model allows a basic understanding of all processes and can be used to analyse optical vibrational modes and electronic transitions in atoms, molecules and crystals, in order to derive general properties of harmonic generation to all orders. In particular, we are done to investigate single, ten, and twenty harmonic oscillator of O2 molecule using GROMACS 4.55. Time is the important factor in simulation because the best result of simulation can be obtained by increasing the number of steps and by decreasing the timesteps. Since the properties only depend on time and not on the specific microscopic model, they can also be adopted for the quantum-mechanical description by using in the classical molecular dynamics.
Â
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Berk Hess, Carsten Kutzner, David van der Spoel, Erik Lindahl., 2008. GROMACS 4: Algorithms For Highly Efficient, Load-balanced, And Scalable Molecular Simulation. J. Chem. Theory Comput. 4 , 435–447. DOI: 10.1021/ct700301q
- Charles B. Harris, David E. Smith, and Daniel J. Russell., 1990. Vibrational relaxation of diatomic molecules in liquids. Chem. Rev. 90, 481-488. DOI: 10.1021/cr00101a003
- F. Iachello., 1998. Algebraic Approach to Molecular Rotationâ€Vibration spectra. I. Diatomic Molecules. J. Chem. Phys. 77, 3046. doi.org/10.1063/1.444228
- Guillaume Lamoureux., 2003. A Simple Polarizable Model of Water Based on Classical Drude Oscillators. J. Chem. Phys. 119, 5185. doi.org/10.1063/1.1598191
- J. J. Rael and A.A. Abidi, 2000. Physical Processes of Phase Noise in Differential LC Oscillators. Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000
- Keith., 1971. Mechanics. Reading, MA: Addison-Wesley. ISBN 0-201-07392-7.
- Kevin Jensen., 2018. Maxwell–Boltzmann distribution; Introduction to the Physics of Electron Emission. Wiley Online Library. DOI: 10.1002/9781119051794.ch5
- Simo, J. C. Hughes, T. J. R. 1998. Computational Inelasticity. Springer. ISBN 9780387975207.
- O. S. van Roosmalen., 1998. Algebraic Approach to Molecular Rotationâ€Vibration Spectra. II. Triatomic Molecules. J. Chem. Phys. 79, 2515. doi.org/10.1063/1.446164
- Philip M. Kiefer and James T. Hynes., 2002. Nonlinear Free Energy Relations For Adiabatic Proton Transfer Reactions In A Polar Environment. II. Inclusion of The Hydrogen Bond Vibration. J. Phys. Chem. 106, 1850–1861. DOI: 10.1021/jp013425w
- Ugural, A. C. Fenster, S. K., 2003. Advanced Strength and Applied Elasticity (4th ed.). Prentice-Hall. ISBN 978-0-13-047392-9
- N. Goga, M.N. Melo, A.J. Rzepiela, A.H. de Vries, A. Hadar, S.J. Marrink, H.J.C. Berendsen., 2015. Benchmark of Schemes For Multiscale Molecular Dynamics Simulations. J. Chem. Theory Comput. 11, 1389-1398. DOI: 10.1021/ct501102b
References
Berk Hess, Carsten Kutzner, David van der Spoel, Erik Lindahl., 2008. GROMACS 4: Algorithms For Highly Efficient, Load-balanced, And Scalable Molecular Simulation. J. Chem. Theory Comput. 4 , 435–447. DOI: 10.1021/ct700301q
Charles B. Harris, David E. Smith, and Daniel J. Russell., 1990. Vibrational relaxation of diatomic molecules in liquids. Chem. Rev. 90, 481-488. DOI: 10.1021/cr00101a003
F. Iachello., 1998. Algebraic Approach to Molecular Rotationâ€Vibration spectra. I. Diatomic Molecules. J. Chem. Phys. 77, 3046. doi.org/10.1063/1.444228
Guillaume Lamoureux., 2003. A Simple Polarizable Model of Water Based on Classical Drude Oscillators. J. Chem. Phys. 119, 5185. doi.org/10.1063/1.1598191
J. J. Rael and A.A. Abidi, 2000. Physical Processes of Phase Noise in Differential LC Oscillators. Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000
Keith., 1971. Mechanics. Reading, MA: Addison-Wesley. ISBN 0-201-07392-7.
Kevin Jensen., 2018. Maxwell–Boltzmann distribution; Introduction to the Physics of Electron Emission. Wiley Online Library. DOI: 10.1002/9781119051794.ch5
Simo, J. C. Hughes, T. J. R. 1998. Computational Inelasticity. Springer. ISBN 9780387975207.
O. S. van Roosmalen., 1998. Algebraic Approach to Molecular Rotationâ€Vibration Spectra. II. Triatomic Molecules. J. Chem. Phys. 79, 2515. doi.org/10.1063/1.446164
Philip M. Kiefer and James T. Hynes., 2002. Nonlinear Free Energy Relations For Adiabatic Proton Transfer Reactions In A Polar Environment. II. Inclusion of The Hydrogen Bond Vibration. J. Phys. Chem. 106, 1850–1861. DOI: 10.1021/jp013425w
Ugural, A. C. Fenster, S. K., 2003. Advanced Strength and Applied Elasticity (4th ed.). Prentice-Hall. ISBN 978-0-13-047392-9
N. Goga, M.N. Melo, A.J. Rzepiela, A.H. de Vries, A. Hadar, S.J. Marrink, H.J.C. Berendsen., 2015. Benchmark of Schemes For Multiscale Molecular Dynamics Simulations. J. Chem. Theory Comput. 11, 1389-1398. DOI: 10.1021/ct501102b