Main Article Content
Abstract
The synthesis of biocomposite (HA:TCP) – Gelatine – CMC for bone filler material has been carried out. In this research, the ratio of HA and TCP was varied as follows: 70:30, 50:50 and 40:60. The decrease of HA and the increase of TCP concentration will decrease the density, increase the percentage of porosity and swelling. The best composition for the synthesis was obtained for sample B with the ratio of HA:TCP = 50:50. For sample B, the synthesized biocomposite has the density of 1.67790 gr/cm3, porosity of 78.64%, tension of 10.14 MPa, swelling ability 46.85% and the sample mass degradation percentage of 8.1 %. The composition used for the biocomposite synthesis in this research was suitable to be applied as bone filler material which needs a dense pores and high tension.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Aoki, H., 1991. Science Medical Applications Of Hydroxyapatite, JAAS, Tokyo
- DEPKES, 2009, Waspadai osteoporosis di Indonesia. http://www.depkes.co.id/index.php.html. diperoleh tanggal 26 Maret 2016
- Hajrawati, 2006, Sifat Fisik dan Kimia Gelatin Tulang Sapi dengan Perendaman Asam Klorida pada Konsentrasi dan Lama Perendaman yang Berbeda, Thesis, Sekolah Pascasarjana Institut Pertanian Bogor, Indonesia
- Kashiwazaki H., Yusuke K., Atsushi M., Keisuke Y., and Tadhasi I., 2009, Fabrication of porous chitosan/ hydroxyapatite nanocomposites: their mechanical and biological properties, Bio. Med. Mat. And Eng., 19, 133-140
- Levin, M.P., Getter, L., and Cutright, D.E., 1975, A comparison of iliac marrow and biodegradable ceramic in periodontal defects. J. Biomed. Mater. Res. 9, 183
- Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A. andGinebra, M. P., 2011, Novel Soybean/ Gelatin-Based Bioactive and Injectable Hydroxyapatite Foam: Material Properties and Cell Response, Acta Biomaterialia 7 Inc Elsevier Ltd, Italia: 1780-1787
- Pierre, C., 2006, Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats, Biomaterials, 27, 4566-4572
- Victoria, E.C., and Gnanam, F.D., 2012, Synthesis And Characterisation Of Biphasic Calcium Phosphate, Trends. Biomater. Artif. Organ, Vol.16 (1) PP 12-14
- Wilman, G., 1996, Medical Grade Hydroxyapatite. State of The Art, Bristh Ceramic Transaction, Vol. 95. No 5
- WHO., 2009.Osteoporosis ancaman kesehatan penduduk dunia. http://www.who.org/program/osteoporosis/index.html, Diakses pada tanggal 26 Maret 2016
References
Aoki, H., 1991. Science Medical Applications Of Hydroxyapatite, JAAS, Tokyo
DEPKES, 2009, Waspadai osteoporosis di Indonesia. http://www.depkes.co.id/index.php.html. diperoleh tanggal 26 Maret 2016
Hajrawati, 2006, Sifat Fisik dan Kimia Gelatin Tulang Sapi dengan Perendaman Asam Klorida pada Konsentrasi dan Lama Perendaman yang Berbeda, Thesis, Sekolah Pascasarjana Institut Pertanian Bogor, Indonesia
Kashiwazaki H., Yusuke K., Atsushi M., Keisuke Y., and Tadhasi I., 2009, Fabrication of porous chitosan/ hydroxyapatite nanocomposites: their mechanical and biological properties, Bio. Med. Mat. And Eng., 19, 133-140
Levin, M.P., Getter, L., and Cutright, D.E., 1975, A comparison of iliac marrow and biodegradable ceramic in periodontal defects. J. Biomed. Mater. Res. 9, 183
Perut, F., Montufar, E. B., Ciapetti, G., Santin, M., Salvage, J., Traykova, T., Planell, J. A. andGinebra, M. P., 2011, Novel Soybean/ Gelatin-Based Bioactive and Injectable Hydroxyapatite Foam: Material Properties and Cell Response, Acta Biomaterialia 7 Inc Elsevier Ltd, Italia: 1780-1787
Pierre, C., 2006, Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats, Biomaterials, 27, 4566-4572
Victoria, E.C., and Gnanam, F.D., 2012, Synthesis And Characterisation Of Biphasic Calcium Phosphate, Trends. Biomater. Artif. Organ, Vol.16 (1) PP 12-14
Wilman, G., 1996, Medical Grade Hydroxyapatite. State of The Art, Bristh Ceramic Transaction, Vol. 95. No 5
WHO., 2009.Osteoporosis ancaman kesehatan penduduk dunia. http://www.who.org/program/osteoporosis/index.html, Diakses pada tanggal 26 Maret 2016