Penerapan Metode *Extreme Learning Machine* (*ELM*) untuk Meramalkan Produksi Air Minum dan Air yang Dijual di Kota Yogyakarta Tahun 2023

Kireyna Cindy Pradhisa 1,*, Rahmadi Yotenka²

- ^{1,2} Program Studi Statistika, Universitas Islam Indonesia, Jl. Kaliurang KM 14,5, Kabupaten Sleman Daerah Istimewa Yogyakarta, 55584, Indonesia
- * Corresponding author: kireyna.pradhisa@students.uii.ac.id

P-ISSN: 2986-4178 **E-ISSN:** 2988-4004

Riwayat Artikel

Dikirim: 03 April 2024 Direvisi: 10 Juni 2024 Diterima: 20 Juni 2024

ABSTRAK

Peramalan adalah teknik analisis dengan melibatkan data referensi/historis dari masa lalu untuk memprediksi kejadian dimasa mendatang. Air adalah suatu zat cair yang tidak berbau, tidak mempunyai rasa, warna, dan belum terjamin kebersihannya untuk dikonsumsi. Sedangkan air minum sendiri merupakan air yang telah melalui proses tahapan pengolahan yang sudah terjamin bersih dan aman untuk dikonsumsi/diminum. Semakin lama air minum sangat dibutuhkan bagi kehidupan masyarakat sehari-hari dan sudah menjadi kebutuhan pokok. Tujuan dari penelitian ini adalah untuk meramalkan banyaknya penjualan air minum dan air yang dijual di Kota Yogyakarta selama 12 periode kedepan. Data yang digunakan dalam penelitian ini adalah data time series dari Januari 2018 hingga Desember 2022. Penelitian ini menggunakan Software RStudio dan metode Extreme Learning Machine (ELM). Maka, didapatkan nilai Mean Absolute Percentage Error (MAPE) 6.854473 untuk peramalan data produksi air minum. Sedangkan pada peramalan data air yang dijual diperoleh nilai Mean Absolute Percentage Error (MAPE) 1.253288.

Kata Kunci: Air, Peramalan, ELM, Error, RMSE, MAPE

ABSTRACT

Forecasting is an analytical technique data/historical references from the past to predict future events. Air is a liquid substance that is odorless, has no taste, color, and is not guaranteed to be clean for consumption. While drinking water itself is water that has gone through a processing stage that is guaranteed to be clean and safe for consumption/drinking. Increasingly, drinking water is needed for people's daily lives and has become a basic need. The purpose of this study is to predict the volume of drinking water and water sold in the City of Yogyakarta for the next 12 periods. The data used in this research is time series data from January 2018 to December 2022. This research uses RStudio Software and the Extreme Learning Machine (ELM) method. Thus, a Mean Absolute Percentage Error (MAPE) value of 6.854473 is obtained for forecasting drinking water production data. Meanwhile, in forecasting the data of water being sold, the value of the Mean Absolute Percentage Error (MAPE) is 1.253288.

Keywords: Water, Predictions, ELM, Error, RMSE, MAPE

1. Pendahuluan

Air merupakan sebuah zat yang tersusun dari beberapa zat yang tidak memiliki rasa, tidak berbau, dan tidak memiliki warna. Selain itu air juga merupakan kebutuhan pokok yang berperan penting dalam kehidupan untuk menjaga keberlangsungan hidup manusia. Apabila dalam tubuh manusia kekurangan cairan, tubuh akan dehidrasi. Maka perlu untuk mengonsumsi air minum agar tubuh tidak terdehidrasi dan mengalami beberapa penyakit. Air minum sendiri merupakan air yang telah melalui proses tahapan pengolahan yang sudah terjamin bersih dan aman untuk dikonsumsi/diminum.

Produk air PDAM (Perusahaan Daerah Air Minum) adalah sarana penyediaan air bersih oleh perusahaan daerah yang telah diproses atau diolah agar dapat dikonsumsi atau diminum. Air PDAM (Perusahaan Daerah Air Minum) Kota Yogyakarta bersumber dari mata air Umbulwadon, sumur dalam, sumur dangkal, dan air permukaan. Pengolahan air PDAM (Perusahaan Daerah Air Minum) melalui beberapa proses yang panjang, sehingga air dapat langsung dikonsumsi atau diminum.

Berdasarkan uraian diatas, penulis akan melakukan peramalan terhadap Produksi Air Minum dan Air yang dijual di Kota Yogyakarta. Peramalan sendiri adalah perkiraan mengenai sesuatu dimasa mendatang yang belum terjadi. Jumlah produksi dan air yang dijual dapat berubah-ubah setiap tahunnya, maka dalam dari itu, perlu adanya peramalan (forecasting). Untuk memenuhi kebutuhan pasar maka perusahaan harus mengetahui berapa peramalan penjualan yang akan datang agar meminimalkan biaya produksi sehingga perusahaan dapat memproduksi air minum sesuai dengan penjualan yang telah diramalkan. Dalam peramalan tentunya diperlukan ketepatan dalam memilih metode. Untuk meminimalisir kesalahan peramalan, penulis menggunakan metode kecerdasan buatan yakni metode Extreme Learning Machine (ELM) untuk meramalkan Produksi Air minum dan Air yang dijual di Kota Yogyakarta 12 periode kedepan. Extreme Learning Machine (ELM) adalah metode jaringan saraf baru yang inovatif. Metode ini menggunakan algoritma jaringan saraf dengan satu lapisan tersembunyi untuk menghitung bobot output menggunakan metode kuadrat terkecil. ELM adalah jenis jaringan saraf feed-forward dengan satu lapisan tersembunyi. Keunggulan ELM dibandingkan metode lain adalah waktu komputasi yang lebih cepat dan output yang stabil dalam waktu nyata [1].

2. Metodologi Penelitian

Pada penelitian ini, penulis menggunakan 2 data yakni data produksi Air Minum dan data Air yang dijual di Kota Yogyakarta tahun 2018 sampai tahun 2022 yang bersumber dari *website* BPS Kota Yogyakarta. Tuliskan metodologi penelitian yang digunakan termasuk data dan sumber data yang digunakan. Penulis menggunakan 2 variabel yaitu Periode dan Produksi Air Minum untuk data pertama. Lalu untuk data kedua, penulis juga menggunakan 2 variabel yakni Periode dan Air yang dijual. penulis menggunakan metode *Extreme Learning Machine (ELM)* untuk meramalkan Produksi Air minum dan Air yang dijual di Kota Yogyakarta 12 periode kedepan dengan menggunakan *Software RStudio*. Dibawah ini merupakan bagan alir penelitian yang penulis lakukan:

Gambar 2.1 Bagan Alir Penelitian

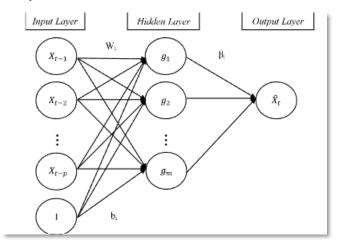
2.1. Air

Air adalah suatu zat bertekstur cair yang tidak memiliki bau, rasa serta warna. Air juga merupakan kebutuhan pokok dalam kehidupan sehari-hari setiap manusia yang harus memiliki kualitas dan kuantitas yang memadai. Pada pasal 33 ayat (3) Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 mengatakan bahwa air adalah salah satu kekayaan alam yang dikuasai oleh Negara dan dipergunakan untuk sebesar-besar kemakmuran rakyat. Kebutuhan air bersih dapat dipenuhi melalui beberapa cara, salah satunya melalui saluran pipa yang dikelola oleh Perusahaan Daerah Air Minum (PDAM). Perusahaan Daerah Air minum (PDAM) sendiri merupakan perusahaan daerah penyedia sarana air bersih yang mengurus penyaluran air bersih bagi masyarakat umum [1].

2.2. Statistika Deskriptif

Statistik deskriptif adalah ilmu statistika yang mempelajari proses pengumpulan, analisis, dan penyajian data penelitian. Selain itu, statistika deskriptif juga merupakan ilmu yang mendiskripsikan data agar lebih mudah dibaca pembaca dan dipahami salah satunya dengan cara menjabarkan atau menambahkan keterangan pada data tersebut dalam bentuk tabel, histogram ataupun grafik. Statistik deskriptif menyajikan materi secara ringkas, jelas dan dapat memberikan informasi inti dari kumpulan data yang ada [2].

2.3. Peramalan


Peramalan adalah proses memperkirakan atau memprediksi nilai atau peristiwa masa depan berdasarkan data masa lalu. Ini dapat dilakukan dengan menggunakan berbagai teknik dan metode statistik, matematika atau pembelajaran mesin. *Forecast* merupakan perkiraan atau prediksi kejadian yang akan datang, tentunya dengan perencanaan ke depan, dimana perencanaan tersebut dibuat berdasarkan kapasitas dan permintaan/kapasitas produksi dari usaha tersebut [3].

2.4. Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) adalah metode pembelajaran mesin yang dikenal karena kemampuannya mengolah data dengan cepat dan mudah. Extreme Learning Machine adalah metode pembelajaran baru untuk jaringan syaraf tiruan [4]. Dalam jaringan saraf tiruan ini, mirip dengan otak manusia, terdapat beberapa neuron yang saling berhubungan. Neuron-neuron tersebut mengirimkan informasi yang diterima dari satu neuron ke neuron lainnya. Informasi yang dibawa oleh neuron disimpan dalam nilai tertentu yang disebut bobot [6].Berikut adalah model runtun waktu Extreme Learning Machine (ELM) dengan munit pada satu hidden layer:

$$\hat{x}_t = \sum_{i=1}^m \beta_i g(w_i \cdot x_i + b_i) \tag{1}$$

Keterangan: \hat{x}_t = data prediksi, β_i = bobot yang menghubungkan *neuron hidden* dengan *neuron output*, w_i = bobot yang menghubungkan *neuron input* dengan *neuron hidden*, x_j = vektor data *input*, b_i = bobot bias ke *neuron hidden*

Gambar 2.2 Arsitektur Jaringan *Extreme Learning Machine*

2.4.1. Data Training

Data *training* adalah bagian dari dataset yang digunakan untuk melatih model atau algoritma pembelajaran mesin (*machine learning*). Berikut rumus persamaan untuk menghitung keluaran di *hidden layer*:

$$H_{init\,ij} = \left(\sum_{k=1}^{n} w_{ik} \cdot x_{ik}\right) + b_{i} \tag{2}$$

Keterangan:

 $H_{init} = \text{Matriks}$ keluaran $hidden\ layer,\ i = [1,2,...,N]$, dimana N adalah keseluruhan jumlah data, $j = [1,2,...,\widetilde{N}]$, dimana \widetilde{N} adalah keseluruhan $hidden\ neuron,\ n = \text{Jumlah}$ $input\ neuron,\ w = \text{Bobot}\ input,\ x = Input\ data\ yang\ digunakan,\ b = \text{Nilai}\ bias,\ Berikut\ adalah\ persamaan\ untuk\ menghitung\ nilai\ output\ weight.$

$$\beta = H^+ T \tag{3}$$

 β = Matriks *Output weight*, H^+ = Matriks *Moore-Penrose Generalized Invers* dari matriks H, T = Matriks Target.

2.4.2. Data Testing

Data *testing* merupakan bagian dari *dataset* yang digunakan untuk menguji kinerja model atau algoritma pembelajaran mesin (*machine learning*) yang telah dilatih dengan data *training*. Berikut adalah persamaan untuk menghitung nilai *output layer*:

$$y = H\beta \tag{4}$$

 $y = Output \ layer \ yang merupakan hasil prediksi, <math>H = nilai \ output \ weight \ didapatkan \ dari proses \ training, <math>\beta = Keluaran \ di \ hidden \ layer \ dihitung \ dengan \ fungsi \ aktivasi.$

2.4.3. Proses Denormalisasi Data

Proses ini menghasilkan nilai yang dinormalisasi ke nilai aslinya. Berikut adalah persamaan untuk proses denormalisasi data :

$$d = d'(max - \min) + \min \tag{5}$$

d' = nilai hasil prediksi sebelum didenormalisasi, d = nilai asli setelah didenormalisasi, min = nilai minimum pada data set fitur X, max = nilai maksimal pada data set fitur X

2.4.4. Mean Square Error (MSE)

Mean Square Error merupakan salah satu metrik evaluasi yang biasa digunakan untuk mengukur seberapa baik model regresi dapat memprediksi nilai yang benar. Mean Square Error (MSE) digunakan untuk mengevaluasi hasil prediksi. Persamaan 10 berikut ini digunakan untuk menghitung nilai error pada hasil prediksi [5]. Berikut merupakan perhitungannya:

$$MSE = \frac{\sum_{i=1}^{n} e_i^2}{n} = \frac{\sum_{i=1}^{n} (yi - ti)^2}{n}$$
 (6)

n = Jumlah data, i = [1, 2, ..., n], n yaitu keseluruhan jumlah data, e = Error, y = Nilai *output* (prediksi), t = Nilai aktual

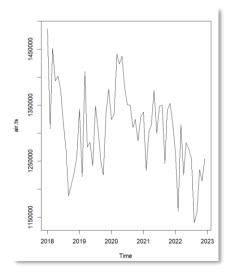
2.4.5. Ukuran Kesalahan Peramalan

Ukuran kesalahan peramalan digunakan untuk mengevaluasi seberapa akurat suatu model peramalan dalam memprediksi nilai masa depan dari suatu variabel.

2.4.6. Mean Absolute Percentage Error (MAPE)

Mean Absoulte Percentage Error adalah angka yang menunjukkan besaran kesalahan prediksi yang akan dibandingkan dengan nilai aslinya. Semakin kecil MAPE, semakin akurat model dalam melakukan prediksi. Artinya model dengan MAPE 5% merupakan model peramalan yang lebih baik dibandingkan model lain dengan MAPE 10%. Berikut rumus MAPE:

$$MAPE = \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{X_t - X_t'}{X_t} \right| \tag{7}$$


 $X_t = \text{Data asli}, X'_t = \text{Data prediksi}, n = \text{Total data [6]}$

3. Hasil dan Pembahasan

3.1. Data Produksi Air Minum

3.1.1. Analisis Deskriptif

Analisis deskriptif bertujuan untuk mengetahui gambaran umum dan detail dari masing-masing variabel. Berikut merupakan Data Produksi Air Minum di Kota Yogyakarta pada periode Januari 2018 sampai Desember 2022 digambarkan secara visual seperti pada *output* dibawah.

Gambar 3.1 Plot Produksi Air Minum di Kota Yogyakarta tahun 2018-2022

Dari *plot* diatas dapat dilihat bahwa pada Produksi Air Minum di Kota Yogyakarta tahun 2018-2022 cenderung mengalami pola *trend* acak. Data tersebut tidak musiman karena data tersebut tidak mengalami perulangan tetapi datanya cenderung turun. Pada awal Januari tahun 2018 produksi air minum masih tinggi yakni mencapai 1486367 m^3 . Setelah itu mengalami penurunan dan kembali mengalami sedikit penaikan yang selanjutnya berlanjut turun drastis di bulan September 2018 sebesar 1188292 m^3 . Lalu kembali naik turun sampai bulan Oktober tahun 2019. Selanjutnya dari bulan November 2019 mengalami kenaikan hingga mencapai 1441062 m^3 pada bulan Maret 2020 meskipun ada sedikit penurunan. Setelah itu kembali mengalami penurunan yang mana tetap berpola naik turun hingga akhir tahun 2022.

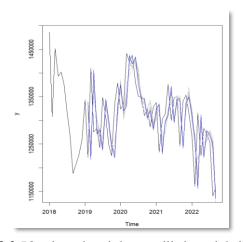
3.1.2. Analisis Extreme Learning Machine

• Pembagian Data Training & Data Testing

Penulis menggunakan metode *Extreme Learning Machine (ELM)* pada analisis ini yang bertujuan untuk meramalkan Produksi Air minum di Kota Yogyakarta 12 periode kedepan. Pertama-tama penulis membagi antara data training dan data testing dengan output seperti gambar dibawah.

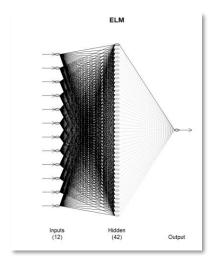
Tabel 3.1 Data *Training* Produksi Air Minum di Kota Yogyakarta 2018-2022

Hasil Data Training						
Bulan	Tahun					
	2018	2019	2020	2021	2022	
Januari	1486367	1343266	1323998	1337851	1265630	
Februari	1308227	1222106	1333938	1233130	1160550	
Maret	1451333	1410167	1441062	1302640	1315314	
April	1393198	1275628	1423434	1313916	1225602	
Mei	1401745	1283860	1437361	1376398	1282904	
Juni	1376282	1242369	1379376	1299882	1271401	
Juli	1315710	1348193	1350502	1347972	1254761	
Agustus	1268049	1305990	1349818	1349817	1140355	
September	1188292	1248901	1310177	1245902	1157830	
Oktober	1208236	1225473	1324727	1341150		
November	1227887	1335463	1285805	1353318		


Hasil Data Training						
Bulan	Tahun					
	2018	2019	2020	2021	2022	
Desember	1257008	1379491	1329096	1316787		

Tabel 3.2 Data Testing Produksi Air Minum di Kota Yogyakarta 2018-2022

Hasil Data Testing		
Bulan	lan Tahun	
	2022	
Oktober	1234885	
November	1213927	
Desember	1253856	


Pada *Output* diatas dapat dilihat bahwa penulis membagi masing-masing 98% data *training* dan 2% data *testing* yang bertujuan untuk mempresentasikan data sebelumnya yang akan digunakan untuk peramalan dimasa depan. Pada produksi air minum data *training* dimulai pada Januari 2018 sampai September 2022 dan data *testing* dimulai pada Oktober 2022 sampai Desember 2022.

• Pemodelan Extreme Learning Machine

Gambar 3.2 Plot data aktual dan prediksi produksi air minum

Berdasarkan *plot* data produksi air minum diatas dapat dilihat bahwa terdapat 2 garis dengan warna yang berbeda. Garis hitam merupakan data aktual dan garis biru merupakan data prediksi. Data aktual sendiri merupakan data diperoleh dengan mengamati, mengukur atau merekam peristiwa atau fenomena di dunia nyata. Sedangkan data prediksi merupakan data perkiraan hasil atau kejadian di masa depan. Sehingga diperoleh bahwa *plot* tersebut data prediksinya mengikuti pola data aktualnya.

Gambar 3.3 Plot model neuron network pada produksi air minum

Berdasarkan *output* produksi air minum diatas dapat dilihat bahwa memiliki pada *inputs* terdapat 12 *neuron*, *hidden* 42 *neuron*, dan 1 *neuron* pada *output layer*. Pada *hidden layer* menghasilkan sebanyak 40 *neuron* serta 1 *neuron* pada *output layer*. Terdapat garisgaris yang menghubungkan masing-masing *neuron* yang disebut garis *sineps*. Pada *input layer* dan *hidden layer* menghasilkan pembobotan sebanyak 504 parameter yang diperoleh dari 12 *input layer* dikalikan dengan 42 *hidden layer*. Lalu, antara *hidden layer* dan *output layer* menghasilkan pembobotan sebanyak 42 yang diperoleh dari 42 *hidden layer* dikalikan dengan 1 *output layer* dengan yang membedakan pada garis yang jelas dan putusputus. Pada garis putus-putus memiliki arti bahwa konvergen ke 0 atau tidak terlalu memengaruhi prediksi.

• Menghitung Lags, MSE, Fitted dan Prediksi

Tabel 3.3	Lags & MSE data produksi air minum
Lags	1 2 3 4 5 6 7 8 9 10 11 12
MSE	5379135975

Tabel 3.4 Fitted Value produksi air minum Februari 2019 – September 2022

Bulan	Fitted				
	2019	2020	2021	2022	
Januari		1375277	1324882	1312573	
Februari	1339052	1319784	1333637	1261416	
Maret	1217892	1329724	1228916	1156336	
April	1405953	1436848	1298426	1311100	
Mei	1271414	1419220	1309702	1221388	
Juni	1279646	1433147	1372184	1278690	
Juli	1238155	1375162	1295668	1267187	
Agustus	1343979	1346288	1343758	1250547	
September	1301776	1345604	1345603	1136141	
Oktober	1244687	1395963	1241688		
November	1221259	1320513	1336936		
Desember	1331249	1281591	1349104		

Berdasarkan 2 tabel *Lags & MSE* serta *Fitted Value* diatas dapat dilihat bahwa nilai *mean square error (MSE)* sebesar 5379135975. Sedangkan nilai *Fitted Value*nya dimulai dari bulan Februari 2019 sampai bulan September 2022.

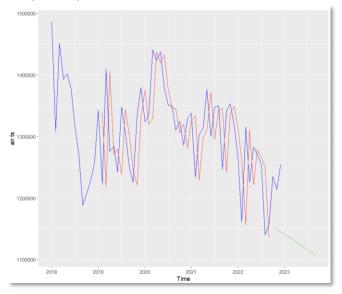
Tabel 3.5 Prediksi 12 Periode yang Akan Datang data produksi air minum

Prediksi				
Bulan	Tahun			
	2022	2023		
Oktober	1153616			
November	1149401			
Desember	1145187			
Januari		1140972		
Februari		1136758		
Maret		1132543		
April		1128329		
Mei		1124114		
Juni		1119900		
Juli		1115685		
Agustus		1111471		
September		1107257		

Berdasarkan output tabel diatas dapat dilihat bahwa prediksi 12 periode kedepan pada data produksi air mengalami kenaikan drastis meskipun sempat mengalami sedikit penurunan. Perkiraan produksi tertinggi berada pada bulan Oktober 2023 dengan 1153616 dan perkiraan data terendahnya berada pada bulan September 2023 dengan 1107257.

• Ukuran Kesalahan untuk Data Testing

Tabel 3.6 Nilai *error* data produksi air minum

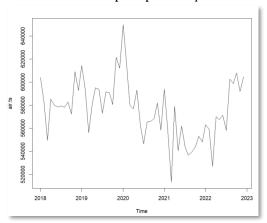

Hasil <i>error</i>			
Bulan	Tahun		
	2022		
Oktober	81269.45		
November	64525.91		
Desember	108669.36		

Tabel 3.7 Nilai *RMSE* & *MAPE* data produksi air minum

<i>RMSE</i>	73342.59
MAPE	6.854473

Berdasarkan *output* tabel diatas dapat dilihat bahwa pada nilai *error* pada bulan Oktober 2022 sebesar 81269.2, November 2022 sebesar 64525.91, dan Desember 2022 sebesar 108669.36. Dengan nilai *RMSE* 73342.59 dan nilai *MAPE* 6.854473, maka penggunaan metode *Extreme Learning Machine* (*ELM*) pada peramalan data Produksi Air Minum di Kota Yogyakarta sangat baik.

Plot Data Aktual, Fitted, dan Prediksi


Gambar 3.4 Plot Data Aktual, Fitted, dan Prediksi Produksi Air Minum

Dari *plot* diatas dapat dilihat bahwa garis berwarna biru adalah data aktual, garis berwarna merah adalah data penyesuaian model (*fitted*), dan garis berwarna hijau merupakan data prediksi. Pada tampilan plot tampak bahwa garis berwarna hijau atau data prediksi memiliki pola data yang mengalami penurunan hingga September 2023 meskipun pada data aktualnya pada Oktober 2022 hingga akhir Desember 2022 mengalami pola *trend* yang cenderung naik.

3.2. Data Air yang Dijual

3.2.1. Analisis Deskriptif

Sama halnya seperti pada Analisis Deskriptif di Data Produksi Air Minum, berikut merupakan Data Air yang Dijual di Kota Yogyakarta pada periode Januari 2018 sampai Desember 2022 digambarkan secara visual seperti pada *output* dibawah.

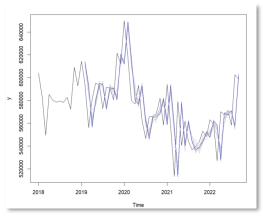
Gambar 3.5 Plot Air yang Dijual di Kota Yogyakarta tahun 2018-2022

Berdasarkan *plot* diatas dapat dilihat bahwa pada data Air yang dijual di Kota Yogyakarta tahun 2018-2022 sama seperti pada data produksi air minum yang cenderung mengalami pola *trend* acak. Data tersebut tidak musiman karena data tersebut tidak mengalami perulangan tetapi datanya cenderung turun. Pada awal Januari 2018 sudah mengalami penurunan hingga 549416 m^3 . Selanjutnya mengalami kenaikan dan penurunan yang tidak stabil sampai pada bulan Oktober 2019. Pada bulan November 2019

mengalami kenaikan yang tinggi dan mencapai data tertinggi yakni sebesar $621424 \, m^3$. Setelah itu kembali mengalami penurunan hingga mencapai data terendah yakni $513498 \, m^3$ pada bulan Maret 2021 meskipun terdapat sedikit kenaikan. Lalu berlanjut kembali mengalami naik turun yang cenderung naik hingga akhir bulan Desember 2022.

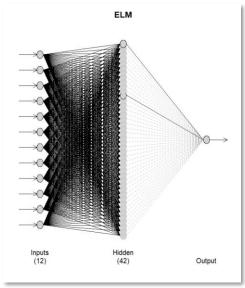
3.2.2. Analisis Extreme Learning Machine

Tabel 3.8 Data *Training* Air yang dijual di Kota Yogyakarta 2018-2022


Hasil Data Training

Hasii Data Training						
Bulan	Tahun					
	2018	2019	2020	2021	2022	
Januari	603877	614584	649885	594277	563178	
Februari	582644	594076	617854	557131	559298	
Maret	549416	556221	579887	513498	527044	
April	585279	580864	576937	579302	570109	
Mei	580174	595164	593255	540551	567610	
Juni	578567	593968	562671	562012	571372	
Juli	579567	572878	546613	543967	558251	
Agustus	578358	591505	565795	536714	602544	
September	582779	590869	565903	539507	598799	
Oktober	572573	580625	568458	544007		
November	609095	621424	581987	553088		
Desember	592817	612106	558564	548099		

Tabel 3.9 Data Testing Air yang dijual di Kota Yogyakarta 2018-2022


Hasil Data Testing			
Bulan	Tahun		
	2022		
Oktober	608058		
November	591958		
Desember	604638		

Pada Output diatas dapat dilihat bahwa penulis membagi masing-masing 98% data *training* dan 2% data *testing* yang bertujuan untuk mempresentasikan data sebelumnya yang akan digunakan untuk peramalan dimasa depan. Pada air yang dijual data *training* dimulai pada Januari 2018 sampai September 2022 dan data *testing* dimulai pada Oktober 2022 sampai Desember 2022.

Gambar 3.6 Plot data aktual dan prediksi air yang dijual

Berdasarkan *plot* data air yang dijual diatas dapat dilihat bahwa terdapat 2 garis dengan warna yang berbeda. Garis hitam merupakan data aktual dan garis biru merupakan data prediksi. Data aktual sendiri merupakan data diperoleh dengan mengamati, mengukur atau merekam peristiwa atau fenomena di dunia nyata. Sedangkan data prediksi merupakan data perkiraan hasil atau kejadian di masa depan. Sehingga diperoleh bahwa *plot* tersebut data prediksinya mengikuti pola data aktualnya.

Gambar 3.7 Plot model neuron network pada air yang dijual

Berdasarkan *output* air yang dijual diatas sama halnya dengan plot data produksi air dapat dilihat bahwa memiliki pada *inputs* terdapat 12 *neuron*, *hidden* 42 *neuron*, dan 1 *neuron* pada *output layer*. Pada *hidden layer* menghasilkan sebanyak 40 *neuron* serta 1 *neuron* pada *output layer*. Terdapat garis-garis yang menghubungkan masing-masing *neuron* yang disebut garis *sineps*. Pada *input layer* dan *hidden layer* menghasilkan pembobotan sebanyak 504 parameter yang diperoleh dari 12 *input layer* dikalikan dengan 42 *hidden layer*. Lalu, antara *hidden layer* dan *output layer* menghasilkan pembobotan sebanyak 42 yang diperoleh dari 42 *hidden layer* dikalikan dengan 1 *output layer* dengan yang membedakan pada garis yang jelas dan putus-putus. Pada garis putus-putus memiliki arti bahwa konvergen ke 0 atau tidak terlalu memengaruhi prediksi.

Tabel 3.10 Lags & MSE data air yang dijual				
Lags	1 2 3 4 5 6 7 8 9 10 11 12			
MSE	638602063			

Tabel 3.11 Fitted Value air yang dijual Februari 2019 – September 2022

Bulan	Fitted				
	2019	2020	2021	2022	
Januari		611924.6	558628.8	547740.2	
Februari	614047.5	649351.7	593682.1	562273.4	
Maret	593268.4	617140.9	556772.2	558529.8	
April	556739.4	579773.5	513165.8	527620.1	
Mei	580349.4	576578.2	578805.9	569014.8	
Juni	594805.2	592896.2	540192.2	567251.2	
Juli	593609.2	562312.2	561653.2	571013.2	
Agustus	572519.2	546254.2	543608.2	557892.2	
September	591146.2	565436.2	536355.2	602185.2	

Bulan		Fitted		
	2019	2020	2021	2022
Oktober	590510.2	565544.2	539148.2	
November	580702.2	568167.0	543648.2	
Desember	620458.4	552722.9	552722.9	

Berdasarkan 2 tabel *Lags* & *MSE* serta *Fitted Value* diatas dapat dilihat bahwa nilai *mean square error* (*MSE*) sebesar 638602063. Sedangkan nilai *Fitted Value*nya sama dengan data produksi air minum yakni dari bulan Februari 2019 sampai bulan September 2022.

Tabel 3.12 Prediksi 12 Periode yang Akan Datang data air yang dijual

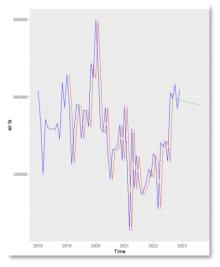
Prediksi				
Bulan	Tahun			
	2022	2023		
Oktober	598440.2			
November	598081.5			
Desember	597722.8			
Januari		597364.0		
Februari		597005.2		
Maret		596646.5		
April		596287.8		
Mei		595929.0		
Juni		595570.2		
Juli		595211.5		
Agustus		594852.8		
September		594494.0		

Berdasarkan *output* tabel diatas dapat dilihat bahwa prediksi 12 periode kedepan pada data air yang dijual mengalami penurunan drastis. Perkiraan produksi tertinggi berada pada bulan November 2022 dengan 598081.5 m^3 dan perkiraan data terendahnya berada pada bulan September 2023 dengan 594494.0 m^3 .

• Ukuran Kesalahan untuk Data Testing

Tabel 3.13 Nilai error data air yang dijual

Hasil error			
Bulan	Tahun		
_	2022		
Oktober	9617.75		
November	-6123.50		
Desember	6915.25		


Tabel 3.14 Nilai RMSE & MAPE data air yang dijual

<i>RMSE</i>	25270.58
MAPE	1.253288

Berdasarkan output tabel diatas dapat dilihat bahwa pada nilai error pada bulan Oktober 2022 sebesar 9617.75, November 2022 sebesar -6123.50, dan Desember 2022 sebesar 6915.25. Dengan nilai *RMSE* 25270.58 dan nilai *MAPE* 1.253288, maka

penggunaan metode *Extreme Learning Machine (ELM)* pada peramalan data air yang dijual di Kota Yogyakarta sangat baik.

• Plot Data Aktual, Fitted, dan Prediksi

Gambar 3.8 Plot Data Aktual, Fitted, dan Prediksi Air yang dijual

Dari *plot* diatas dapat dilihat bahwa garis berwarna biru adalah data aktual, garis berwarna merah adalah data penyesuaian model (*fitted*), dan garis berwarna hijau merupakan data prediksi. Pada tampilan plot tampak bahwa garis berwarna hijau atau data prediksi memiliki pola data yang mengalami penurunan hingga September 2023 meskipun pada data aktualnya pada Oktober 2022 hingga akhir Desember 2022 mengalami pola *trend* yang cenderung naik. Sehingga peramalan data Air yang Dijual di Kota Yogyakarta digunakan sangat baik dibandingkan dengan data Produksi Air Minum di Kota Yogyakarta.

4. Kesimpulan

Berdasarkan hasil analisis dan pembahasan dalam kasus ini, maka dapat diambil kesimpulan sebagai berikut:

- 1. Dari hasil peramalan Produksi Air Minum dan Air yang dijual di Kota Yogyakarta pada 12 periode *kedepan* menggunakan metode *Extreme Learning Machine* (*ELM*) memiliki kesamaan yakni menghasilkan prediksi pola data yang mengalami penurunan hingga September 2023 meskipun pada data aktualnya pada Oktober 2022 hingga akhir Desember 2022 mengalami pola *trend* naik. Lalu untuk rata-rata nilai peramalan pada produksi air minum yakni 969234.1 dan rata rata nilai peramalan pada air yang dijual yakni 511546.5. Maka, dapat disimpulkan bahwa pada peramalan tersebut terdapat 457687,6 air minum yang sudah diproduksi tetapi tidak terjual.
- 2. Dalam penerapan metode *Extreme Learning Machine (ELM)* untuk meramalkan Produksi Air Minum di Kota Yogyakarta dapat dilihat bahwa nilai bulan Oktober 2022 sebesar 81269.2, November 2022 sebesar 64525.91, dan Desember 2022 sebesar 108669.36. Dengan nilai *Root Mean Square Error (RMSE)* 73342.59 dan nilai *Mean Absolute Percentage Error (MAPE)* 6.854473. Sedangkan pada peramalan Air yang dijual di Kota Yogyakarta pada nilai error pada bulan Oktober 2022 sebesar 9617.75, November 2022 sebesar -6123.50, dan Desember 2022 sebesar 6915.25. Dengan nilai *Root Mean Square Error (RMSE)* yakni 25270.58 dan nilai *Mean Absolute Percentage Error (MAPE)* yakni 1.253288. Maka dapat disimpulkan metode *Extreme Learning Machine (ELM)* pada peramalan data Air yang Dijual di Kota Yogyakarta digunakan sangat baik dibandingkan dengan data Produksi Air Minum di Kota Yogyakarta.

5. Daftar Pustaka

- [1] M. Warohma, E. Budianita, F. Syafria and I. Afrianty, "Prediksi Jumlah Perceraian Menggunakan Metode Extreme Learning Machine (ELM)," *Journal of Information System Research (JOSH)*, vol. 4, pp. 1448-1454, 2023.
- [2] R. A. Tambunan, PERAN PDAM DALAM PENGELOLAAN BAHAN AIR BAKU AIR MINUM SEBAGAI PERLINDUNGAN KUALITAS AIR MINUM DI KOTA YOGYAKARTA, 2014.
- [3] D. Daria, 16 BAB III LANDASAN TEORI 3.1 Statistika Deskriptif, 2016.
- [4] D. K. Sofyan, Perencanaan & Pengendalian produksi, Lhoksemawe NAD: Graha Ilmu, 2013.
- [5] B. K. Khotimah, E. M. Sari and H. Yulianarta, KINERJA METODE EXTREME LEARNING MACHINE (ELM) PADA SISTEM PERAMALAN, Jurnal SimanteC Vol 1, No 3., 2010.
- [6] A. Giusti, A. W. Widodo and S. Adinugroho, "Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine (ELM) di Kober Mie Setan Cabang Soekarno Hatta," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 2, pp. 2972-2978, 2018.
- [7] N. M. Ashar, I. Cholissodin and C. Dewi, "Penerapan Metode Extreme Learning Machine (ELM) Untuk Memprediksi Jumlah Produksi Pipa Yang Layak," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, pp. 4621-4628, 2018.
- [8] H. c. Utomo, Perbandingan Peramalan Nilai Indeks Harga Saham Gabungan (IHSG) Dengan Auto Regressive Integrated Moving Average (ARIMA) dan Extreme Learning Machine (ELM) Pada Masa Pandemi Covid-19 2021, 2021.