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ABSTRAK 
Metode finite difference eksplisit adalah metode yang mudah diprogram 

dibandingkan metode finite difference implicit atau metode-metode numerik lainnya. 
Selain itu, metode eksplisit itu dapat digunakan untuk menyelesaikan persamaan panas 
(heat equation) linear dalam satu dimensi. Akan tetapi, metode eksplisit itu mempunyai 
sebuah kekurangan yaitu keterbatasan stabilitas dari penyelesaian numerik adalah sangat 
ketat. Oleh sebab itu, metode eksplisit itu tidak lagi termasuk daftar metode-metode 
numerik yang handal yang dapat digunakan untuk menyelesaikan persamaan-persamaan 
diferensial parsial. 

Oleh karena itu, maka diusulkan untuk menggunakan analisis wavelet Haar di 
dalam skema numerik dari metode eksiplisit untuk mengatasi kekurangan metode itu, 
yaitu keterbatasan stabilitas, dengan menjaga diskretisasi dari metode eksplisit agar tidak 
berubah. Kekurangan dari metode finite difference eksiplisit itu sudah dapat diatasi secara 
signifikan oleh analisis Haar wavelet yang tidak mempengaruhi logika metode asli yatiu 
metode eksiplisit.  
 
Kata kunci: metode finite difference eksplisit, persamaan panas  

 

1. INTRODUCTION 
There are many practical situations in engineering where the geometry or 

boundary conditions are such that an analytical solution has not been obtained at 
all, or if the solution has been developed, it involves such a complex series 
solution that numerical evaluation becomes exceedingly difficult. For such 
situations the most fruitful and yet primitive approach to the problem is one 
based on finite difference techniques. 

Finite differences are used to approximate differential increments in time 
and space coordinates; and the smaller we choose these finite increments, the 
more closely the solution which is numerically approximated. There are two 
fundamental approaches in finite difference; explicit and implicit approaches. 

The explicit method steps out in time in a fashion that is similar to Euler’s 
technique for solving ordinary differential equations. It has the advantage that it 
is simple to program but unfortunately has the disadvantage of a very stringent 
stability. 

Stability of a numerical scheme for solving a partial differential equation 
means that the error at any stage of the computation are not amplified but are 
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attenuated as the computation progresses. It has been proven [2] that if the spatial 
step is halved in order to improve the approximation of the spatial second 
derivative in heat equation, the time step must be quartered to maintain the 
stability of explicit method, otherwise the solution will oscillate or lead to a 
considerably high unstable scheme. Furthermore, the computation of each of these 
time steps will take twice as long because it results in eightfold increase in the 
number of calculations. Thus, the computation burden may be large to attain 
acceptable accuracy. 

The aim of this research is to introduce wavelet analysis in the explicit finite 
difference scheme, which is applied for solving one-dimensional heat equation, in 
order to alleviate the stability requirements of the numerical solution obtained 
from that scheme. 

 

2. BASIC THEORY 
The one-dimensional heat equation can be expressed as follows: 
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The temperature (T) in equation (1) is a function of space and time that is T 

= T (x, t). This function is expanded in Haar scaling function  (x) and Haar 
wavelet function  (x) [3] then multiplied by Haar scaling function in time h (t) as 
follows 

)]()([)()( ,,
0 0

xTxTthT iniini

I

i

N

n
nxn   

 

 (2) 

 
At time level n+1/2, the expansion of T in Haar scaling and wavelet 

functions is 
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The notation I and N represents the number of grids in space and time 

(resolution), respectively. 
Equation (2) and (3) are substituted in equation (1). Equation (2) represents 

the derivative in time while equation (3) is the spatial derivative, that is 
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The inner product of this equation with a weighted function w, which can 

be expressed as follows 
))()((2/1 xxhw iin     

is then integrated using Galerkin method [1]. The resulting equations are 
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Temperatures appeared in equations (6a) and (6b) are shown in Figure 1. It 
is obvious that the scheme is implicit in time step n to n +1/2 and explicit in n + 
1/2 to n + 1. This will ensure an unconditionally stable scheme even with 
infinitesimal time steps. 

For more details about the discretization of this equation see [6] 
 

 

Figure 1. Positions of temperatures appeared in equations (6a) and (6b) 
 

3. NUMERICAL RESULTS 
The one-dimensional heat equation obtained from a wall subjected to a 

temperature of zero degrees centigrade on its both sides and has a thickness of L, 
see Figure 2, along with its boundary and initial conditions can be expressed as 
follows: 
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The exact solution of this equation (7) is  
2

( , ) 100 sin ; 0 , 0tT x t e x x L t         (8) 
 

 
Figure 2. A plane wall zero temperature at the boundaries 

 
Equation (8) represents the temperature distribution within the wall at any 

point within the wall and at any time. The heat conduction transferred through 
the wall can be then evaluated from Fourier’s law [5]. Figure 3 shows the plot of 
Equation (8) at three time levels, t = 0, 15, 30, 45 and 60 seconds 

 



 

TEKNOIN, Vol. 10, No. 1, Maret 2005, 53-59 57 

 

 
Figure 3. The temperature distribution obtained from Equation (8)  along wall 

thickness during five time levels  t = 0, 15, 30, 45, and 60 seconds 
 

Figure 3 was obtained applying the exact solution (Equation 8) using time 
step 15 seconds starts at 0. The total number of data points is 50 that is, (L/50) 
where L = 1 m and the value of heat diffusivity ( = 0.005 m2/s). 

The same details, time step t = 15 sec and special step x = L/50 m, was 
applied to obtain the numerical solution of Equation (7) applying the numerical 
the wavelet-based numerical scheme (Equations (6a) and (6b)). The result is 
shown in Figure 4. 

 

 
 

Figure 4. the solution of Equation (7) using wavelet-based numerical scheme 
Equations (6a) and (6b) 
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4. DISCUSSION 
It is oblivious that the values of temperatures in figures (3) and (4) are not 

the same. For instance, at t = 0 , the maximum value of temperature in figure (3) 
that is the exact solution, is 100C occurs at L/2 while the maximum value of 
temperature in figure (4) that is the numerical solution obtained from the wavelet-
based numerical solution is 73C which occurs at the same position, L/2. 

This difference in temperature values is understood as the numerical error 
which occurs as a result of truncating the expansion of temperature function in 
wavelet series. By other words, it is the difference between the derivative and 
difference equation based on wavelet coefficients. 

The wavelet-based numerical scheme, as expected, resulted in stable 
solution which can be compared to the exact solution yet with an acceptable 
percentage of error. This unconditional stability of wavelet-based scheme 
represents one of the distinctive features of wavelet-based schemes based on its 
ability to copying with nonlinearity and large discretization meshes [3]. 

In wavelet-based scheme, as the time and/or special step gets larger, some 
of additional bases will be added to keep tracing with change of the route of curve 
that might result in floating points as the case of conventional explicit scheme. As 
a result, the numerical solution will be unaffected by the sudden change of the 
time and/or special step. 

 

5. CONCLUSION 
We now get to this conclusion that the draw back of the explicit finite 

difference, namely instability, has been overcome by introducing Haar wavelet 
analysis which, in its essence, did not influence the logical approach of that 
method in term of getting one temperature value in the new time step from three 
known temperature values obtained at the previous time step [2].  Rather, wavelet 
has improved this approach by self adding of new temperature values found at 
the middle point between the previous and next time steps (figure 1). The same 
can be said concerning the special steps. 

This self adding of new values can be interpreted as that wavelet analysis is 
built on multi-resolution analysis [3] in context of expressing a function, 
temperature here, in two coexist levels of resolution; the coarse level is obtained 
by the Haar scaling function and the other refining level is obtained by Haar 
wavelet function. With this the first order of approximation by wavelet expansion, 
compared to the first order of approximation by  Taylor expansion on which the 
explicit finite difference approach is based [2], will results in one unknown 
temperature value obtained from six known values at shorter time step. Those 
three extra known values will result in higher accuracy and stability scheme than 
the Taylor-based numerical scheme which gives one known value of temperature 
corresponds to three known values at longer time step.  

It is of course more consuming time of computation evaluating total 
number of temperature values at one time level than half of that number in the 
same level. This is true as long as the stability restrictions of the conventional 
scheme without wavelets have been satisfied. However, when the problem needs 
more details for the temperature distribution within the physical space the 
situation will be different as this twice as long as the time required for 
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computation will be compensated by the high stability addressed to wavelet-
based approach. 
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