
PSP And PQI: How Do They Improve Individual Software Process (Beni Suranto)

1

PSP AND PQI: HOW DO THEY IMPROVE INDIVIDUAL SOFTWARE PROCESS

Beni Suranto

Department of Informatics, Faculty of Industrial Technology, Universitas Islam Indonesia

Jalan Kaliurang Km.14,5 Sleman, Yogyakarta 55184
Email : beni.suranto@uii.ac.id

ABSTRAK

Dalam proses pengembangan perangkat lunak, setiap pengembang baik tim maupun perorangan

bertujuan untuk dapat menghasilkan produk perangkat lunak yang berkualitas tinggi. Salah satu
kriteria penting dari kualitas perangkat lunak adalah jumlah kesalahan (defect) yang ditemukan pada
perangkat lunak tersebut. Perangkat lunak yang berkualitas tinggi harus memiliki jumlah defect yang
minimal sehingga mampu menyediakan fungsionalitas bagi pengguna dengan tingkat usabilitas yang
tinggi.

Salah satu faktor penting yang berpengaruh signifikan terhadap kualitas produk perangkat lunak
adalah kualitas software process yang dijalankan. Hal ini berlaku untuk proses pengembangan oleh
tim maupun proses pengembangan yang dilakukan oleh software engineer perorangan. Software
Engineering Institue (SEI) di Carnegie Mellon University (Amerika Serikat) telah mengembangkan
metode Personal Software Process (PSP) untuk membantu para software engineer meningkatkan
kualitas software process yang mereka jalankan. Selain itu, SEI juga men gembangkan Process
Quality Index (PQI) yang dapat digunakan untuk mengukur kualitas software process yang dilakukan
oleh para software engineer.

PSP membantu software engineer meningkatkan kualitas software process mereka melalui prakt ek
– praktek yang mendukung proses identifikasi dan perbaikan defect pada perangkat lunak sedini
mungkin. Selain itu, PSP memberikan motivasi yang besar bagi software engineer untuk dapat lebih
disiplin pada setiap tahapan software process yang mereka jalankan. PQI mengukur kualitas software
process dengan menggunakan indikator berupa perbandingan lama waktu penyelesaian serta j umlah
defect yang ditemukan pada setiap tahapan software process.

Kata kunci: software process, PSP, defect, PQI

1. A SOFTWARE ENGINEERS IS

NOT JUST A GOOD

PROGRAMMER

In the IEEE Standard Glossary of
Software Engineering Terminology, the term

"engineering" is defined as “the application
of a systematic, disciplined, quantifiable

approach to structures, machines, products,
systems, or processes” and the term
"software engineering" is defined as “the

application of a systematic, disciplined,
quantifiable approach to the development,

operation, and maintenance of software; that
is, the application of engineering to
software”(Radatz et. al.,1990)

From the above definition, clearly that
software engineering is not just about

coding. And so software engineers is
different from programmers. They are some

certain characteristics that distinguish real
software engineers from programmers.

The most important characteristic of a
real software engineer is capability to
produce high quality software products with

minimum defects (Nguyen, 1998).
Programmers who behave like real software

engineers are really concerning about the
quality of the software products they build
for their customers. The second

characteristic that makes a real software
engineer is consistently improving his/her

engineering performance by using defined
and structured processes (Turley & Bieman,
1995). A real software engineer is a lifelong

learner who never stops improving their
excellence of their performance. And the

next characteristic that defines a real
software engineer is having the ability to
make the best plan for their work based on

Teknoin Vol. 20 No. 4 Desember 2014 : 01-09

2

their own experiences (Khan, 2012). A

programmer can't be a real software engineer
if he/she unable to learn from his/her own
personal data and discover the most effective

way to solve the intended problem.

2. THE PERSONAL SOFTWARE

PROCESS (PSP)

Generally speaking, a software

development process can be described as a
process performed by software engineers to

develop a software product for specific
purposes. This process may be ad hoc by
nature in which there are no standard

guidelines or any documentations; however,
it can be highly standardized as so far as

high quality documentations are concerned
(O'Regan, 2011). The process may be
performed either by an individual software

engineer or by a software project team
involving many software engineers. The

software process and its foundations is
shown conceptually in Figure 1.

In software development, software

process is very important. Most software
engineers contend that the quality of a final

software product adheres to that of the
process so as to develop that software
product (Braude & Bernstein, 2011). The

better quality of the software process used in
the software development, the better quality

of the software product that will be produced
and will be delivered to the users. It is
indispensable for software engineers to enact

a high-quality process in order to present or
produce a high-quality product which meets

their customers' needs.

Figure 1. A conceptual View of The Software

Process and Its Foundations.
(Kemerer & Paulk ,2009)

Currently, there are some well-defined

software process improvement methods that
can be used to improve the quality of
software process. At the individual level, the

Personal Software Process (PSP) is the most
popular approach.

PSP which was developed in 1993 by the
Software Engineering Institute (SEI)
Carnegie Mellon University is a set of

methods and practices that can be used by
software engineers to improve their personal

software process (Humphrey, 2000). There
are many evidences found in many previous
researches that PSP effectively improved the

software engineers’ personal performance.
However, there are many programmers do

not practicing PSP. The most common
reason is that PSP requires discipline. Also,
there are only small number of literature

about the application of the PSP in the real
software industry.

In the PSP, defect density is the most
crucial indicator of the quality of the process
performed by software engineers

(Humphrey, 1998). It is evident that the
primary goal of applying PSP is to deliver a

defect free software product. To this end,
software engineers using PSP remove
defects in the earlier stages (i.e. design,

design review, code, and code review
phases) instead of removing those defects in

the later stages (i.e. compile and test phases).
This defect removal strategy can be enacted
using the three defect filtering tactics in the

PSP. Such tactics involve (1) creating a
sophisticated design as coding guidance, (2)

performing a disciplined review for each
product in every stage, and (3) maintaining
the quality of the product based on the

quality process data. The structure of the
PSP process is shown conceptually in Figure

2.

PSP And PQI: How Do They Improve Individual Software Process (Beni Suranto)

3

Figure 2. PSP Process Flow. (Humphrey, 2000)

The main responsibility of a software

engineer is to deliver high quality products
that meet the requirement from the users.

Among many aspects to software product
quality, the number of defects is the first
thing that must be addressed (Humphrey,

1998). In fact, programmers make a lot of
mistakes. In average, there was a defect

found in every seven to ten LOC in a
program developed by experienced
programmers (Humphrey, 1998).

The PSP provides well-structured strategy
to help programmers to remove almost their

defects before the testing phase. For
example, by performing the design review
and the code review steps in the PSP2

programmers can find and correct the defects
earlier. In general, for systems which were

built with the PSP method there are only 0.2
defects per KLOC found in the testing phase
(Humprey, 2005). In the paper entitled

"Result of Applying the Personal Software
Process", the authors showed the value of the

PSP which was used in three industrial
software groups (i.e. Motorola Paging
Products Group, Advanced Information

Services Inc., and Union Switch & Signal
Inc.). They found that the PSP helped the

three industrial software groups to efficiently
produce the better software by improving
their planning and scheduling activities and

reducing the development time (Ferguson,
1997). In addition, Prechelt et al. (2000)

found that compared with the non-PSP-
trained programmers, the PSP-trained
programmers produced programs which

were much reliable for the same tasks.

As it was mentioned before, software

engineering or software development is not
such a simple process. It consists of many
activities and involves many potential risks

(e.g. time, money). A poor software process
will lead to a failure. So, improving the

software process is an important thing for
programmers. Moreover, most programmers
work in a team and each of them has

contributions to the team. That means the
better individual software process performed

by each programmer, the better performance
of the team.

Every engineer responsible for his/her

own engineering process. In order to
improve their engineering process, real

engineers use well-defined and measured
methods with appropriate tools (Khan,
2012). This agrees with the logic for the PSP

that defined and structured processes will
result in efficiency. Also, the PSP was

developed with the idea that programmers
should learn from their own experiences to
consistently improve their software process

(Humprey, 2000).
The PSP has four maturity levels (i.e.

PSP0, PSP1, PSP2, and PSP3) represent four
different process levels to guide
programmers in improving their individual

software process The PSP life cycle phases
is shown in Figure 3.

Figure 3. PSP Life Cycle Phases.

 (Shen et. al., 2011)

It is true that practicing the PSP requires
discipline. However, one of the most

important factors for software quality is
process discipline. Shen et. al. (2011) found
that the performance of programmers who

used disciplined software processes was

Teknoin Vol. 20 No. 4 Desember 2014 : 01-09

4

superior than that of other programmers who

used ad hoc processes.
Since it is very often that software

development must be accomplished within a

restricted budget and time, planning and
estimating skills are very important for

programmers. The PSP has been proven to
increase the accuracy of the programmers'
estimation on the time they need for

developing a program for a particular task
(Prechelt, 2001). It means that by

conscientiously using the methods and the
practices provided by the PSP, programmers
will be able to make the best plan for their

works based on their personal data from their
previous experiences.

3. THE PROCESS QUALITY INDEX

(PQI)

Many researchers in the software

engineering field have undertaken many
studies and experiments and have proposed

some methods and/or tools for improving a
software development process. Software
Process Improvement (SPI) is perhaps the

most powerful method for improving the
software development process both at

individual level and at organizational level.
SPI takes the advantages of some well-
established process models (e.g. CMMI,

PSP, TSP, Six Sigma, and ISO 9001
Standard) to be adopted by software

engineers to improve their individual or
organizational performance so they can
achieve their primary goal; that is, to

produce a high quality software product
(O'Regan, 2011).

When software engineers apply a
particular process model for their software
development process, it is necessary for

them to perform an evaluative mechanism to
know whether we achieve a high quality

software development process or not. To do
such an evaluation, at the outset, they need
to know what a high-quality software

development process looks like. In the other
words, they need to define the criteria of a

quality software development process. The
Process Quality Index (PQI) can be used as a
metric to define the quality of their software

development process. PQI which was

proposed by the SEI has been a metric or a
yardstick for evaluating the quality of a
particular software development process.

PQI was derived based on the characteristics
of process in the PSP (Humphrey, 2005).

PQI determines the process quality by
considering three things that software
engineers can measure at a particular

software development process stage. These
things embrace the size of code they

produced, the time they spent, and the
number of defects they removed from their
code at that stage (Humphrey, 2005). PQI

provides a quality profile that can serve as a
benchmark for the quality of the entire

software development process.
Fundamentally, there are three software
engineering principles embodied in the

PQI’s quality profile as listed below:

a. Design is of paramount importance in the
process.

b. Technical reviews serve as the foundation

of quality.
c. The number of test defects is predictive of

that of defects in the delivered product.

To evaluate the quality of a software

development process based on the PQI’s
quality profile, software engineers use the

following items (Humphrey, 2005):

a. Design/Code Time = Minimum (design

time/coding time: 1.0).
b. Design Review Time = Minimum (2 *

design review time/design time: 1.0).
c. Code Review Time = Minimum (2 * code

review time/coding time: 1.0).

d. Compile Defects/KLOC = Minimum
(20/(10 + compile defects/KLOC):1.0).

e. Test Defects/KLOC = Minimum (10/(5 +
unit test defects/KLOC):1.0).

The combination of the five items above
will result in a metric score between 0.0 and

1.0 which represents the level of the quality
of the software development process. The
higher the PQI metric score of a software

PSP And PQI: How Do They Improve Individual Software Process (Beni Suranto)

5

development process is, the higher quality of

that process will be.
PQI can be considered as a good choice

when evaluating the quality of a software

development process since it effectively
captures all important aspects of the process.

Based on the five dimensions of the PQI, it
is evident that PQI covers both the creative
phases (i.e. design and coding) and the

review phases (i.e. design review and code
review). Furthermore, it evaluates the most

important quality criteria of a software
product called the defect density.

PQI provides an efficient way to evaluate

a software development process. The five
criteria used in the PQI metric can be

computed when each stage is completed.
PQI is the most appropriate metric for
evaluating the quality of a software

development process in as much as it makes
use of the three realistic and relevant

measurements as defined in the PSP (i.e.
time, size, and number of defects).

Whether a PQI metric of 1.0 represents a

high quality software development process
deserves further discussions. In these

discussions, I would like to discuss this issue
based on the five dimensions of the PQI's
quality profile.

3.1. An Adequate Design Time Means

High Quality Design

Design plays a pivotal role in every
engineering process, including in software
engineering (producing high quality

software), civil engineering (building a
bridge), aircraft engineering (assembling an

airplane), electrical engineering (developing
an electrical power plant), and mechanical
engineering (building a supercar). In a

software development process, software
engineers will be unable to produce a

software product that meets the intended
requirements without a proper design.

Thus, it is obvious that design is a

compulsory stage in a software development
process, but it is important to ponder

whether software engineers perform a good
design task. In response to this challenge,
they can deploy PQI as a metric for ensuring

the quality of their design process using the

ratio of the design time and the coding time.
This approach does make sense in that the
only measurement that they can do in the

design phase is the time spent on it. The next
question to ponder is how much the time

they need to spend to be able to perform a
high quality design process. Adhering to
PQI, a good design process must take more

than half time of the corresponding coding
process.

3.2. An Adequate Design Review Time

Means High Quality Design

As suggested by the principle of the PSP,

software engineers need to remove defects at
the earlier stages of their software

development process. At the first stage, they
utilize design review to identify and remove
defects of the design. They evaluate their

design using a predefined design review
checklist. To be able to effectively evaluate

the design, they are required to have a design
review checklist that touch upon all
important aspects of software design to

guarantee that the design is complete (i.e. the
design meets all relevant requirements),

consistent (i.e. there are no contradictions in
the design), correct (i.e. the design shows
that the product will perform the intended

function and uses the correct logics), robust
(i.e. the design addresses all fault-related

requirements), understandable (i.e. the
design has no ambiguity), and verifiable or
testable (i.e. the design can be verified

and/or tested) (Nelson & Schumann, 2004).
Table 1 shows the PSP data from 3.240

program tasks completed by experienced
software engineers. These data was analyzed
by the SEI for defining the characteristics of

a high-quality software development process
(Humphrey, 2005).

Teknoin Vol. 20 No. 4 Desember 2014 : 01-09

6

Table 1. PSP Data Analyzed by The SEI.
Phase Hours Defects

Injected

Defects

Removed

Defects/

Hour

Design 4,623.6 9,302 2.0
DLDR 1,452.7 4,824 3.3

Code 4,179.6 19,296 4.6

Code

Review
1,780.4 10,758 6.0

In the design review phase, software
engineers can measure two things: the time
they spent on it and the number of defects

they found during the phase. As seen in
Table 1, during the design phase,

professional software engineers inject about
2.0 defects per hour while in the design
review phase they find about 3.3 defects per

hour. Mathematically speaking, it could be
calculated that the software engineers spent

roughly 36 minutes (60 * 2.0/3.3) to review
the design in order to find the defects in the
design phase. From this calculation, the ideal

time for design review is at least half of
design time. Thus, if a PQI metric obtains

1.0, a high quality design review process is
properly performed.

3.3. An Adequate Code Review Time

Means High Quality Code

Once software engineers finish their code,

they need to perform design review to
evaluate the code and remove defects in their
code. Bacchelli & Bird (2013) found that

almost all the software engineers included
finding defects as one of the reasons for

doing code reviews.This finding is shown in
Figure 3.

Figure 3. Software Engineers' Motivations for

Code Review. (Bacchelli & Bird, 2013)

In PSP, software engineers use

programming-language specific view for the
design review. In doing so, they must ensure
that their code is correctly enacted based on

the programming language they use in the
entire software development process. This

code review requires the following standard
checklist (Nelson & Schumann, 2004) :

a. Generic properties: strategic and tactical
comments in the code. Strategic

comments belong to a function or
procedure while tactical comments
explain a particular single line of code.

b. Variables and data types properties:
variable declarations and initializations,

constants, variables naming.
c. Object-oriented related properties:

classes, method overriding, inheritance,

class interface.
d. Flow control: iteration structure, method

calls, decision control structure, recursive
structure.

e. Computation: values calculation,

variables update.
f. Error handling: exception type, error

messages.
g. Argument passing: methods' argument

declaration, return values, temporary

objects.
h. Coding standards: indentations, code

block structure format.

These properties of code take

considerable time for software engineers to
review the code. Based on the PQI metric,

they need to spend more than half of coding
time for the code review. I will elaborate on
a conceptual justification for this.

From the data shown in Table 1, on
average, a professional software engineer

will inject approximately 4.6 defects in one
hour of coding. Table 1 shows that they can
find roughly 6.0 defects in one hour during

the code review. In other words, the time
taken to review the code produced in one

hour coding is about 46 minutes ((4.6/6.0) x
60). From this calculation, the ideal time for
code review is at least half of coding time.

This suggest that if software engineers

PSP And PQI: How Do They Improve Individual Software Process (Beni Suranto)

7

obtain a PQI metric of 1.0, they perform a

high quality code review process.
Kemerer & Paulk (2009) investigates the

effect of review rate on defect removal

effectiveness and the quality of software
products, while controlling for a number of

potential confounding factors. Two data sets
of 371 and 246 programs, respectively, from
a PSP approach were analyzed using both

regression and mixed models. Review
activities in the PSP process are those steps

performed by the developer in a traditional
inspection process. The results show that the
PSP review rate is a significant factor

affecting defect removal effectiveness, even
after accounting for developer ability and

other significant process variables.

3.4. Minimum Defects In The Final Stage

Means High Quality Product

There is a myriad of different definitions
of a high quality software product. In a

technical sense, a high quality software
product is the one that contains a minimum
number of defects in the final stage of its

development process (Gillies, 2011). In this
process, there are two determinants of

assessing if the final product is of high
quality. These two determinants include
compile defects and test defects.

The PQI uses the number of compile
defects and test defects to represent that of

defects at the final stages of a software
development process. A compile defect is
the one removed during the code

compilation phase while a test defect is that
removed during the testing phase.

The SEI indicates that when a software
product contains more than about 10 compile
defects per KLOC in the compiling phase, it

has a mediocre quality in the testing phase.
The SEI also shows that when a software

product contains more than about 5 test
defects per KLOC in the unit testing phase, it
has a poor quality in the system testing

(Humphrey, 2005). In addition, from data on
many software products, the SEI reveals that

when a software product obtains less than 10
compile defects per KLOC and less than 5.0
test defects per KLOC, it has a very few if

any remaining defects (Humphrey, 2000).

These findings support the fourth and the
fifth criteria of the PQI metric. Such findings
show evidence that when a software

engineer achieves a PQI metric of 1.0, he/she
yields a high quality software product.

4. CONCLUCIONS

Programmers who conscientiously apply
the PSP in all their projects are behaving like

real software engineers. There are some
certain characteristics that distinguish real
engineers from programmers. Programmers

will be able to gain the real software
engineer characteristics by conscientiously

using the PSP in their software engineering
process. In this context, having a real
engineers' characteristics means increasing

the quality of the product, improving the
individual performance, and having the

ability to make the best plan based on the
previous data.

PQI provides a valid and trustworthy

yardstick for evaluating the quality of a
software development process. The PQI

metric take into account all essential aspects
in the software development process, and it
adheres to a relevant and doable

measurement mechanism to determine the
criteria of the quality software development

process. The highest score in the PQI metric
of the software development process is 1.0. I
have shown four arguments to support the

validity of the scoring calculation employed
in the PQI metric. Each of the arguments

shows how each of the criteria in PQI metric
properly represents the quality of each of the
defect filtering stage deployed in the whole

software development process. This
representation is conceptually grounded in

the PSP framework.

Teknoin Vol. 20 No. 4 Desember 2014 : 01-09

8

REFERENCES

Bacchelli, A., & Bird, C, Expectations,
outcomes, and challenges of

modern code review.
In Proceedings of the 2013

International Conference on
Software Engineering (pp. 712-
721). IEEE Press, 2013.

Braude, E. J., & Bernstein, M. E.. Software
engineering: modern approaches. J.

Wiley & Sons, 2011.
D'Ambros, M., Bacchelli, A., & Lanza, M.,

On the impact of design flaws on

software defects. In Quality
Software (QSIC), 2010 10th

International Conference on (pp.
23-31). IEEE, 2010.

Ferguson, P. "Results of applying the

Personal Software Process".
Computer (Long Beach, Calif.)

(0018-9162), 30 (5), p. 24. DOI:
10.1109/2.589907, 1997.

Gillies, A. Software quality: theory and

management. Lulu. Com, 2011.
Humphrey, W. S. The software quality

profile. Software Quality
Professional, 1(1), 8-18. Diakses
dari http://citeseerx.ist.psu.edu/-

viewdoc/download?doi=10.1.1.174.
1021&rep=rep1& type=pdf, 1998.

Humphrey, W. The Personal Software
ProcessSM (PSPSM)(CMU/SEI-2000-
TR-022, ADA387268). Pittsburgh,

PA: Software Engineering Institute,
Carnegie Mellon University.

Diakses dari
http://www.sei.cmu.edu/reports-
/00tr022.pdf, 2000.

Humphrey, W. The Personal Software
ProcessSM (PSPSM)(CMU/SEI-

2000-TR-022, ADA387268).
Pittsburgh, PA: Software
Engineering Institute, Carnegie

Mellon University, Diakses dari
http://www.sei.cmu.-

edu/reports/00tr022.pdf, 2000.

Humphrey, W. S. "Acquiring Quality

Software." CROSSTALK The
Journal of Defense Software
Engineering 19-23, 2005.

Humphrey, W. S. PSPsm: a self-
improvement process for software

engineers. Addison-Wesley
Professional, 2005.

Kemerer, C. F., & Paulk, M. C. The impact

of design and code reviews on
software quality: An empirical

study based on PSP data. Software
Engineering, IEEE Transactions
on, 35(4), 534-550, 2009.

Khan, AK "Amalgamation of Personal
Software Process in Software

Development Practice". And lo, the
star, 1 (2), p. 59. Diakses dari
http://www.starjournal.org/uploads/

starjournal/07.pdf, 2012.
Nelson, S., & Schumann, J. What makes a

code review trustworthy?. In System
Sciences, 2004. Proceedings of the
37th Annual Hawaii International

Conference on (pp. 10-pp). IEEE,
2004.

Nguyen, D. Q. The essential skills and
attributes of an engineer: a
comparative study of academics,

industry personnel and engineering
students. Global J. of Engng.

Educ, 2(1), 65-75. Diakses dari
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.124.1502&re

p=rep1&t ype=pdf, 1998.
O’Regan, G, Motivation for Software

Process Improvement. In
Introduction to Software Process
Improvement (pp. 1-12). Springer

London, 2011.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.1021&rep=rep1&%20type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.1021&rep=rep1&%20type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.1021&rep=rep1&%20type=pdf
http://www.sei.cmu.edu/reports/00tr022.pdf
http://www.sei.cmu.edu/reports/00tr022.pdf
http://www.sei.cmu.edu/reports/00tr022.pdf
http://www.sei.cmu.edu/reports/00tr022.pdf
http://www.starjournal.org/uploads/starjournal/07.pdf
http://www.starjournal.org/uploads/starjournal/07.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.1502&rep=rep1&t%20ype
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.1502&rep=rep1&t%20ype
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.1502&rep=rep1&t%20ype

PSP And PQI: How Do They Improve Individual Software Process (Beni Suranto)

9

Paulk, M. C. Factors affecting personal

software quality. Institute for
Software Research, 4. Diakses dari
http://repository.cmu.edu/cgi/-

viewcontent.cgi?article=1011&cont
ext=isr&sei-redir=1&referer=http-

%3A%2F%2Fscholar.google.com.a
u%2Fscholar%3Fstart%3D10%26
q%3DPSP%2Band%2Bprogramme

rs%2Bbehavior%26hl%3Den%26a
s_sdt%3D0%2C5%26as_ylo%3D1

995#search=%22PSP%20program
mers%20behavior%22, 2006.

Pomeroy-Huff, M., Cannon, R., Chick, T.

A., Mullaney, J., & Nichols, W. The
Personal Software ProcessSM

(PSPSM) Body of Knowledge,
Version 2.0 (No. CMU/SEI-2009-
SR-018). CARNEGIE-MELLON

UNIV PITTSBURGH PA
SOFTWARE ENGINEERING

INST, 2009.
Prechelt, L. "An experiment measuring the

effects of personal software process

(PSP) training". IEEE transactions
on software engineering (0098-

5589), 27 (5), p. 465. DOI:
10.1109/32.922716, 2001.

Radatz, J., Geraci, A., &Katki, F. IEEE

standard glossary of software
engineering terminology. IEEE Std,

610121990, 121990. Diakses dari
http://www.idi.ntnu.no/grupper/su/p
ubl/ese/ieee-se-glossary-610.12-

1990.pdf, 1990.
Shen, W. H., Hsueh, N. L., & Lee, W. M.

Assessing PSP effect in training
disciplined software development:
A Plan–Track–Review

model.Information and Software
Technology, 53(2), 137-148, 2011.

Turley, R. T., &Bieman, J. M. Competencies
of exceptional and nonexceptional
software engineers. Journal of

Systems and Software, 28(1), 19-38.
Diakses dari

http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.54.8463&rep
=rep1&ty pe=pdf, 1995.

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1011&context=isr&sei-redir=1&referer=http%3A%2F%2Fscholar.google.com.au%2Fscholar%3Fstart%3D10%26q%3DPSP%2Band%2Bprogrammers%2Bbehavior%26hl%3Den%26as_sdt%3D0%2C5%26as_ylo%3D1995#search=%22PSP%20programmers%20behavior%22
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8463&rep=rep1&ty%20pe=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8463&rep=rep1&ty%20pe=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.8463&rep=rep1&ty%20pe=pdf

