Main Article Content
Abstract
Electromyograph signal (EMG) is a non-stationary biomedical signal, making it difficult to
determine the pattern. The method normally used for signal analysis is Fast Fourier Transform (FFT), but it has some drawbacks because it requires stable signals. To answer this deficiency wavelet transformation is used, especially discrete wavelet transforms that can analyze the signal in both the realm of time and frequency.
The method to be used in this research is wavelet transformation for signal analysis with
decomposition up to level 7 using wavelet symlet 8. This feature extraction result is used as input of artificial neural network (ANN) type of propagation backward with architecture of 8 input layer, 5 hidden layer and 3 layers of output.
ANN Turnback is able to recognize 3 types of EMG signals namely Normal, Myopathy and
Neuropathy. Based on the feature extraction of EMG signal decomposition energy characteristics. Network architecture with 8 input layers. 5 hidden layers and 3 output layers Proven best in the introduction of EMG signals. The highest success rate is the introduction of EMop Myopathy signal pattern reaching 94%, so the network architecture is proposed to regenerate the EMG signal.
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).