Main Article Content

Abstract

Shell-and-tube heat exchangers (STHEs) are critical components in industrial compression systems, often serving as aftercoolers for compressed air. This study aims to design a 400 HP STHE aftercooler using a hybrid approach: manual calculation based on Kern’s method and simulation using Heat Transfer Research Inc. (HTRI) software. Compared parameters include heat transfer rate, Log Mean Temperature Difference (LMTD), surface area, overall heat transfer coefficient (U), and shell-side and tube-side pressure drop. Results show high consistency in thermal parameters (Q = 144.55 kW vs. 143.55 kW; LMTD = 17.71 °C vs. 17.4 °C; A = 11.44 m² vs. 11.437 m²), yet reveal an extreme disparity in shell-side pressure drop: 3.82 psi (manual) vs. 98.31 psi (HTRI). This discrepancy highlights the limitations of simplified assumptions in manual calculations in modeling real-flow complexities such as baffle effects, leakage paths, and non-uniform flow distribution—accurately captured by HTRI. This study affirms that integrating manual calculation as the preliminary design and HTRI verification as the optimization tool is the best practice for producing heat exchanger designs that are both thermally and operationally efficient.

Keywords

Shell and Tube Aftercooler Perhitungan Manual HTRI Pressure Drop Optimasi Desain

Article Details

References

  1. Afandiyanoto, A., Hazwi, M., Pintoro, A., & Sembiring, P. G. (2018). Analisa penukar kalor aftercooler type shell and tube. Jurnal Dinamika, 6(1), 1–10.

  2. Azwinur, A., & Zulkifli, Z. (2019). Kaji eksperimental pengaruh baffle pada alat penukar panas. SINTEK Jurnal, 13(1), 8–14. https://doi.org/10.24853/sintek.13.1.8-14

  3. Bizzy, I., & Setiadi, R. (2016). Studi perhitungan alat penukar kalor tipe shell and tube dengan program HTRI. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1), 67–76.

  4. Handibag, R., Potdar, U., & Jadhav, A. (2020). Thermal design of tube and shell heat exchanger and verification by HTRI software. International Journal of Engineering Research & Technology (IJERT), 9(12), 525–530.

  5. Hakim, M. A. (2023). Perancangan model miniatur gas compressor aftercooler. Neliti. https://doi.org/10.13140/RG.2.2.30291.45601

  6. HTRI. (2022). HTRI Xchanger Suite technical overview. Heat Transfer Research, Inc.

  7. Husen, A., Setiadi, B., & Septiawan, I. (2022). Analisis tegangan pada part shell dan tube heat exchanger. Presisi, 24(1), 45–52.

  8. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer (7th ed.). Wiley.

  9. Kern, D. Q. (1950). Process heat transfer (1st ed.). McGraw-Hill.

  10. Kharisma, A. A. (2021). Perancangan heat exchanger tipe shell dan tube secara metoda matematis dan simulasi software. Jurnal Rekayasa Mesin, 20(2), 27–34. https://doi.org/10.36706/jrm.v20i2.66

  11. Nandiyanto, A. B. D., Ragadhita, R., & Kurniawan, T. (2022). Shell and tube heat exchanger design for titanium dioxide particle production process. Journal of Engineering Science and Technology, 17(5), 3224–3234.

  12. Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit. Jurnal POLIMESIN, 15(2), 42–48. https://doi.org/10.30811/jpl.v15i2.373

  13. Sahajpala, S., & Shah, P. D. (2013). Thermal design of ammonia desuperheater-condenser and comparative study with HTRI. Procedia Engineering, 51, 375–379. https://doi.org/10.1016/j.proeng.2013.01.052

  14. Serth, R. W., & Lestina, T. G. (2014). Process heat transfer: Principles, applications and rules of thumb (2nd ed.). Academic Press. https://doi.org/10.1016/C2011-0-07242-3

  15. Singh, P., Desai, B., & Bora, L. (2015). Optimization of air cooled heat exchanger design using HTRI. International Journal of Research in Science & Innovation (IJRSI), 3(2), 217–221.