Main Article Content
Abstract
Shell-and-tube heat exchangers (STHEs) are critical components in industrial compression systems, often serving as aftercoolers for compressed air. This study aims to design a 400 HP STHE aftercooler using a hybrid approach: manual calculation based on Kern’s method and simulation using Heat Transfer Research Inc. (HTRI) software. Compared parameters include heat transfer rate, Log Mean Temperature Difference (LMTD), surface area, overall heat transfer coefficient (U), and shell-side and tube-side pressure drop. Results show high consistency in thermal parameters (Q = 144.55 kW vs. 143.55 kW; LMTD = 17.71 °C vs. 17.4 °C; A = 11.44 m² vs. 11.437 m²), yet reveal an extreme disparity in shell-side pressure drop: 3.82 psi (manual) vs. 98.31 psi (HTRI). This discrepancy highlights the limitations of simplified assumptions in manual calculations in modeling real-flow complexities such as baffle effects, leakage paths, and non-uniform flow distribution—accurately captured by HTRI. This study affirms that integrating manual calculation as the preliminary design and HTRI verification as the optimization tool is the best practice for producing heat exchanger designs that are both thermally and operationally efficient.
Keywords
Article Details
Copyright (c) 2025 Iriansyah Putra, Andri Adi Seftandi, Muhammad Ihsan, Ferri Festika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
Afandiyanoto, A., Hazwi, M., Pintoro, A., & Sembiring, P. G. (2018). Analisa penukar kalor aftercooler type shell and tube. Jurnal Dinamika, 6(1), 1–10.
Azwinur, A., & Zulkifli, Z. (2019). Kaji eksperimental pengaruh baffle pada alat penukar panas. SINTEK Jurnal, 13(1), 8–14. https://doi.org/10.24853/sintek.13.1.8-14
Bizzy, I., & Setiadi, R. (2016). Studi perhitungan alat penukar kalor tipe shell and tube dengan program HTRI. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1), 67–76.
Handibag, R., Potdar, U., & Jadhav, A. (2020). Thermal design of tube and shell heat exchanger and verification by HTRI software. International Journal of Engineering Research & Technology (IJERT), 9(12), 525–530.
Hakim, M. A. (2023). Perancangan model miniatur gas compressor aftercooler. Neliti. https://doi.org/10.13140/RG.2.2.30291.45601
HTRI. (2022). HTRI Xchanger Suite technical overview. Heat Transfer Research, Inc.
Husen, A., Setiadi, B., & Septiawan, I. (2022). Analisis tegangan pada part shell dan tube heat exchanger. Presisi, 24(1), 45–52.
Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer (7th ed.). Wiley.
Kern, D. Q. (1950). Process heat transfer (1st ed.). McGraw-Hill.
Kharisma, A. A. (2021). Perancangan heat exchanger tipe shell dan tube secara metoda matematis dan simulasi software. Jurnal Rekayasa Mesin, 20(2), 27–34. https://doi.org/10.36706/jrm.v20i2.66
Nandiyanto, A. B. D., Ragadhita, R., & Kurniawan, T. (2022). Shell and tube heat exchanger design for titanium dioxide particle production process. Journal of Engineering Science and Technology, 17(5), 3224–3234.
Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit. Jurnal POLIMESIN, 15(2), 42–48. https://doi.org/10.30811/jpl.v15i2.373
Sahajpala, S., & Shah, P. D. (2013). Thermal design of ammonia desuperheater-condenser and comparative study with HTRI. Procedia Engineering, 51, 375–379. https://doi.org/10.1016/j.proeng.2013.01.052
Serth, R. W., & Lestina, T. G. (2014). Process heat transfer: Principles, applications and rules of thumb (2nd ed.). Academic Press. https://doi.org/10.1016/C2011-0-07242-3
Singh, P., Desai, B., & Bora, L. (2015). Optimization of air cooled heat exchanger design using HTRI. International Journal of Research in Science & Innovation (IJRSI), 3(2), 217–221.
References
Afandiyanoto, A., Hazwi, M., Pintoro, A., & Sembiring, P. G. (2018). Analisa penukar kalor aftercooler type shell and tube. Jurnal Dinamika, 6(1), 1–10.
Azwinur, A., & Zulkifli, Z. (2019). Kaji eksperimental pengaruh baffle pada alat penukar panas. SINTEK Jurnal, 13(1), 8–14. https://doi.org/10.24853/sintek.13.1.8-14
Bizzy, I., & Setiadi, R. (2016). Studi perhitungan alat penukar kalor tipe shell and tube dengan program HTRI. Jurnal Rekayasa Mesin Universitas Sriwijaya, 13(1), 67–76.
Handibag, R., Potdar, U., & Jadhav, A. (2020). Thermal design of tube and shell heat exchanger and verification by HTRI software. International Journal of Engineering Research & Technology (IJERT), 9(12), 525–530.
Hakim, M. A. (2023). Perancangan model miniatur gas compressor aftercooler. Neliti. https://doi.org/10.13140/RG.2.2.30291.45601
HTRI. (2022). HTRI Xchanger Suite technical overview. Heat Transfer Research, Inc.
Husen, A., Setiadi, B., & Septiawan, I. (2022). Analisis tegangan pada part shell dan tube heat exchanger. Presisi, 24(1), 45–52.
Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2011). Fundamentals of heat and mass transfer (7th ed.). Wiley.
Kern, D. Q. (1950). Process heat transfer (1st ed.). McGraw-Hill.
Kharisma, A. A. (2021). Perancangan heat exchanger tipe shell dan tube secara metoda matematis dan simulasi software. Jurnal Rekayasa Mesin, 20(2), 27–34. https://doi.org/10.36706/jrm.v20i2.66
Nandiyanto, A. B. D., Ragadhita, R., & Kurniawan, T. (2022). Shell and tube heat exchanger design for titanium dioxide particle production process. Journal of Engineering Science and Technology, 17(5), 3224–3234.
Putra, I. (2017). Studi perhitungan heat exchanger type shell and tube dehumidifier biogas limbah sawit. Jurnal POLIMESIN, 15(2), 42–48. https://doi.org/10.30811/jpl.v15i2.373
Sahajpala, S., & Shah, P. D. (2013). Thermal design of ammonia desuperheater-condenser and comparative study with HTRI. Procedia Engineering, 51, 375–379. https://doi.org/10.1016/j.proeng.2013.01.052
Serth, R. W., & Lestina, T. G. (2014). Process heat transfer: Principles, applications and rules of thumb (2nd ed.). Academic Press. https://doi.org/10.1016/C2011-0-07242-3
Singh, P., Desai, B., & Bora, L. (2015). Optimization of air cooled heat exchanger design using HTRI. International Journal of Research in Science & Innovation (IJRSI), 3(2), 217–221.