Published online on: https://journal.uii.ac.id/jurnalsnati/ M) Check for updates |
DOI: 10.20885/snati.v5.11.42248

TURNAL Jurnal Sains, Nalar, dan Aplikasi

SNATI Teknologi Informasi

e sz asobsinans Vol 5 No. 1 (2026) 62 - 71 ISSN Media Electronic: 2807-5935

Implementasi Mitigasi Berlapis Kerentanan Unrestricted File Upload dan
Server-Side JavaScript Injection

Implementation Layered Mitigation Techniques for Unrestricted File Upload and Server-Side
JavaScript Injection

Salman Akbar Hasbullah', Mohamad Nurkamal Fauzan?, Roni Andarsyah’”
1.23 Program Studi D4 Teknik Informatika, Sekolah Vokasi, Universitas Logistik dan Bisnis Internasional, Bandung,
Indonesia
11214073 @std.ulbi.ac.id, m.nurkamal. f@ulbi.ac.id, 3*roniandarsyah@ulbi.ac.id

Abstract

The popularity of Node.js as a server-side application development platform has introduced new security challenges
stemming from the dynamic features of JavaScript. Vulnerabilities such as Unrestricted File Upload (UFU) and Server-Side
JavaScript Injection (SSJI) often arise from insecure input handling and over-reliance on third-party libraries. This research
aims to design, implement, and evaluate a multi-layered security mitigation model for Node.js-based web applications built
using the Express.js framework. A constructive research approach was employed, wherein hybrid security middleware was
developed to enforce comprehensive validation. This middleware integrates content-based file type validation (magic
numbers), file name sanitization to prevent path traversal, and malicious input pattern blocking to mitigate SSJI and
prototype pollution. The effectiveness of the model was empirically evaluated within a controlled local testing environment
using the Jest testing framework by comparing a vulnerable application against its secured counterpart. Test results
demonstrate that the proposed mitigation model successfully blocked 100% of the tested attack scenarios, achieving 100%
test code coverage on the core security logic. This research yields a practical solution capable of enhancing the resilience of
Node.js applications against common attacks exploiting language-specific features

Keywords: Node.js; Unrestricted File Upload; Server-Side JavaScript Injection; Security Middleware

Abstrak

Popularitas Node.js sebagai platform pengembangan aplikasi sisi server telah membawa tantangan keamanan baru yang
bersumber dari fitur-fitur dinamis JavaScript. Kerentanan seperti Unrestricted File Upload (UFU) dan Server-Side
JavaScript Injection (SSJI) seringkali muncul akibat penanganan input yang tidak aman dan kepercayaan berlebih pada
library pihak ketiga. Penelitian ini bertujuan untuk merancang, mengimplementasikan, dan mengevaluasi sebuah model
mitigasi keamanan berlapis untuk aplikasi web berbasis Node.js yang dibangun menggunakan framework Express.js. Metode
yang digunakan adalah pendekatan penelitian konstruktif, di mana sebuah middleware keamanan hibrida dikembangkan
untuk menerapkan validasi komprehensif. Middleware ini mengintegrasikan validasi tipe file berbasis magic number, sanitasi
nama file untuk mencegah path traversal, serta pemblokiran pola input berbahaya untuk menanggulangi SSJI dan prototype
pollution. Efektivitas model dievaluasi secara empiris dalam lingkungan pengujian lokal yang terkontrol menggunakan
framework pengujian Jest dengan membandingkan aplikasi yang rentan dengan aplikasi yang telah diamankan. Hasil
pengujian menunjukkan bahwa model mitigasi yang diusulkan berhasil memblokir 100% skenario serangan yang diujikan,
dengan cakupan kode pengujian mencapai 100% pada logika inti keamanan. Penelitian ini menghasilkan sebuah solusi
praktis yang dapat meningkatkan ketahanan aplikasi Node.js terhadap serangan umum yang berbasis pada fitur bahasa.

Kata kunci: Node.js; Unrestricted File Upload; Server-Side JavaScript Injection; Middleware keamanan

1. Pendahuluan yang luas ini diiringi dengan peningkatan vektor
ancaman dan kerentanan keamanan yang signifikan [5-
6]. Sifat dinamis JavaScript, fleksibilitas fitur-fiturnya,
dan interaksinya yang kompleks dengan berbagai API
[7] dapat secara tidak sengaja memperkenalkan celah
keamanan jika tidak dikelola dengan hati-hati [8-9].
Keamanan aplikasi web menjadi semakin krusial,

Popularitas JavaScript sebagai bahasa pemrograman
sisi server, yang didorong oleh ekosistem Node.js,
telah mengubah cara aplikasi web modern dibangun
[1-2]. Kemampuannya dalam menangani operasi 1/O
asinkron membuatnya efisien untuk aplikasi yang
membutuhkan skalabilitas tinggi [3-4]. Namun, adopsi

Received: 24-07-2025 | Revised: 25-12-2025 | Accepted: 29-12-2025 | Published: 31-01-2026
62

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

mengingat potensi serangan siber yang terus
berkembang [10-11].

Penelitian sebelumnya telah menyoroti berbagai risiko
spesifik dalam ekosistem Nodejs. Studi oleh
Ntantogian et al. [12] mendemonstrasikan bahaya
Server-Side JavaScript Injection (SSJI) yang timbul
dari penyalahgunaan fitur eksekusi kode dinamis [13].
Di sisi lain, Oz et al. [14] mengungkap bahwa library
unggah file populer seringkali gagal memberikan
perlindungan yang memadai terhadap serangan
Unrestricted File Upload (UFU). Kerentanan lain
yang berakar pada sifat dinamis JavaScript adalah
Prototype Pollution, di mana manipulasi objek dapat
mengubah perilaku aplikasi secara global [15-16].
Tantangan dalam menganalisis kode JavaScript yang
dinamis juga menjadi perhatian utama [17], yang
menunjukkan adanya kesenjangan (gap) antara
kebutuhan keamanan dan kemampuan alat yang
tersedia. Praktik pengembangan perangkat lunak yang
aman (secure SDLC) dan proses code review yang
efektif menjadi sangat penting dalam konteks ini,
meskipun seringkali sulit diterapkan secara konsisten
[18-19].

Meskipun SSJI dan UFU merupakan kelas kerentanan
yang telah dikenal, mitigasi yang ada seringkali
bersifat parsial dan reaktif [13]. Penelitian ini
bertujuan untuk merancang, mengimplementasikan,
dan mengevaluasi sebuah model keamanan hibrida
yang mengintegrasikan validasi sisi server yang kuat
dengan mekanisme otorisasi modern seperti time-
bound token. Pendekatan berlapis ini diharapkan dapat
menciptakan solusi yang lebih tangguh, efisien, dan
komprehensif. Oleh karena itu, tujuan dari penelitian
ini adalah untuk menganalisis cara kerja dan sumber
kerentanan Server-Side JavaScript Injection (SSJI) dan
Unrestricted File Upload (UFU) dalam lingkungan
Node.js/Express.js, merancang serta
mengimplementasikan model mitigasi berlapis yang
mengintegrasikan beberapa lapisan pertahanan seperti
validasi konten file, sanitasi nama file, dan pemfilteran
input berbahaya, serta mengukur efektivitas dan

dampak kinerja dari model gabungan tersebut melalui
pengujian fungsional dan pengujian beban secara
komparatif terhadap pendekatan yang tidak
menggunakan mitigasi.

Untuk menjaga fokus penelitian serta memastikan
kedalaman analisis, ruang lingkup, dan batasan
masalah dalam penelitian ini ditetapkan sebagai
berikut:

1. Fokus penelitian pada kerentanan Unrestricted
File Upload dan Server-Side JavaScript
Injection serta dampaknya (XSS, Prototype
Pollution)

2. Implementasi dilakukan pada lingkungan
runtime Nodejs menggunakan framework
Express.js.

3. Pengujian performa berfokus pada metrik
Connect Time, Elapsed Time, dan Latency
menggunakan beban 500 hingga 1000 threads

4. Mekanisme keamanan diterapkan sebagai
Middleware sisi server, tidak mencakup
keamanan sisi klien atau konfigurasi firewall

2. Metodologi Penelitian

Penelitian ini menggunakan pendekatan penelitian
konstruktif, di mana fokus utamanya membangun
sebuah artefak; dalam hal ini, sebuah framework
mitigasi perangkat lunak untuk menyelesaikan
masalah praktis yang telah teridentifikasi. Proses
penelitian ini dilaksanakan melalui empat fase utama
yang terstruktur: pertama, tahap analisis dan
perancangan yang Dberfokus pada identifikasi
kerentanan serta perancangan arsitektur mitigasi;
kedua, implementasi mitigasi sisi server dengan
membangun middleware keamanan untuk menangani
UFU dan SSJI; ketiga, implementasi otorisasi time-
bound token sebagai mekanisme kontrol akses
terhadap file yang diunggah; dan keempat, pengujian
serta evaluasi komparatif untuk mengukur efektivitas
dan dampak kinerja dari sistem yang telah diamankan
dibandingkan dengan sistem tanpa mitigasi.

SPRINT 1 ——» SPRINT2 e

Penulisan

SPRINT 3 » SPRINT4 >
Laporan
T T
l l !]
Aunalisis & Perancangan Implementasi Mitigasi Sisi Server ".Tr"“"'“““’ Slorkest Pengujian & Evaluasi Komparatif
ime - Bouad Token
———
Studi Literatur (SLR)| g f
PRISMA ‘ Unrestricted File Pembuatan Skenario Uji
{ Upload (Qest)
- - Implementasi Server
Identifikasi Fitur & ‘ 0'“"5“‘,3'.;1.“"‘ Sgncd
Kerentanan Implementasi) - -
) Middleware | Eksekusi Tes - Rentan vs
Pencegahan Server -
(Side JavaScript A
N 10e Javascrpl |
Desain Arsitektur ‘. Injeclion oy h
Mitigasi
Gambar 1. Alur proses penelitian
—@ Frime Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

63

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

Gambar 1 merupakan tahapan alur penelitian yang
menggunakan pendekatan konstruktif;, tiap fase
memiliki tujuan spesifik tertentu untuk menghasilkan
komponen yang dapat dievaluasi.

2.1. Analisis dan Perancangan

Tahapan awal ini berfokus pada pengembangan
landasan teoritis dan konseptual untuk penelitian.
Aktivitas utama pada fase ini adalah sebagai berikut:

1. Studi Literatur Sistematis PRISMA melakukan
tinjauan terhadap 41 artikel ilmiah untuk
mengidentifikasi fitur-fitur JavaScript yang
berisiko di lingkungan server-side dan jenis-
jenis kerentanan yang terkait.

Mengidentifikasi Fitur & Kerentanan dari
kerentanan Unrestricted File Upload dan
Server-Side JavaScript Injection.

Merancang Desain Arsitektur Mitigasi dengan
framework keamanan hibrida. Desain ini
mencakup pembuatan middleware dan
pembuatan model untuk otorisasi unggahan file
menggunakan time-bound token.

2.2. Implementasi Mitigasi Sisi Server

Fokus dari Fase ini adalah pengembangan komponen
dari inti framework keamanan di sisi server.

2.2.1. Implementasi Middleware UFU

Mengembangkan middleware untuk Node.js yang
menggabungkan tiga lapisan validasi: pemeriksaan
tipe file berbasis magic numbers (konten), sanitasi
nama file dengan menghasilkan UUID, dan (opsional)
sanitasi konten dasar.

2.2.2. Implementasi Middleware SSJ1

Mengembangkan middleware untuk mendeteksi dan
memblokir payload berbahaya yang menargetkan SSJ/
dan Prototype Pollution. Ini melibatkan penggunaan
regular expressions untuk mencocokkan pola kode
yang berbahaya dan validasi properti objek untuk
mencegah polusi prototipe.

2.3. Implementasi Otorisasi Time-bound Token

Fase ini didedikasikan untuk membangun komponen
kedua dari model keamanan, yaitu arsitektur unggahan
file yang lebih modern, dengan mengimplementasikan
server otorisasi yang mengembalikan endpoint AP/
pada server Node.js yang bertugas membuat foken
yang aman dan berbatas waktu (time-bound token)
sebagai respons atas permintaan unggahan dari klien.

2.4. Pengujian dan Evaluasi Komparatif

Fase terakhir ini berfokus pada validasi dari solusi
yang telah dibangun, antara lain:

1. Pembuatan Skenario Uji: Merancang dan

mengimplementasikan serangkaian fest cases
otomatis menggunakan framework Jest.
Skenario uji ini mencakup berbagai payload
serangan untuk UFU dan SSJI.
Eksekusi Pengujian Komparatif: Menjalankan
test suite terhadap kedua aplikasi (rentan dan
aman) untuk membandingkan hasilnya. Metrik
utama yang diukur adalah tingkat keberhasilan
serangan (apakah berhasil diblokir atau tidak).

3. Hasil dan Pembahasan

Bab ini merinci proses eksperimen yang dilakukan
untuk menguji dan mengevaluasi efektivitas model
mitigasi yang diusulkan. Eksperimen dirancang untuk
memvalidasi kemampuan framework dalam mengatasi
kerentanan Unrestricted File Upload (UFU) dan
Server-Side JavaScript Injection (SSJI), serta
kerentanan terkait seperti Cross-Site Scripting (XSS)
dan Prototype Pollution. Pengujian dilakukan secara
komparatif pada dua lingkungan: aplikasi yang sengaja
dibuat rentan (sebelum mitigasi) dan aplikasi yang
telah diamankan menggunakan middleware yang
dikembangkan (sesudah mitigasi).

3.1. Lingkungan Pengujian

Terdapat dua target aplikasi server Node.js/Express
yang telah disiapkan

3.1.1. Aplikasi Rentan (vulnerableApp.js)

Sebuah aplikasi dasar yang mengimplementasikan
fitur upload file dan pencarian dengan validasi
minimal, sengaja dirancang untuk rentan terhadap
serangan UFU dan SSJL

nst vulnerableUpload = mul

ter(: vulnerableStorage }):

Gambar 1. Kode yang rentan terhadap UFU

Gambar 2 merupakan contoh kode multer yang
rentan,dikarenakan menggunakan nama file asli, yang
rentan terhadap path traversal

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

64

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

", vulnerableUpload.single("file™), (

app.p

tidak am:

Gambar 2. Kode tanpa validasi

Gambar 3. Kode rentan terhadap SSJI

Pada gambar 3, salah satu handler/upload yang rentan
dikarenakan tidak ada validasi atau middleware yang
diberikan. Sedangkan pada gambar 4, terdapat fungsi
eval() yang akan mengeksekusi semua kode
JavaScript yang diberikan, termasuk kode berbahaya.
Ini termasuk kerentanan Server-Side JavaScript
Injection, karena input dari pengguna langsung
dieksekusi sebagai kode.

3.1.2. Skenario Serangan dan Mitigasi yang diuji

Pada gambar 5 merupakan skenario seseorang
penyerang mengunggah file berbahaya ke server,
seperti fileBerbahaya php, atau file lain yang telah
dimanipulasi tipe MIME-nya agar lolos validasi
permukaan. Request tersebut dikirim ke server melalui
endpoint upload (misalnya /upload).

Menyimpan file

Post /filcBerbahaya.php tanpa sanitasi

Request di prosess

O

Middleware Rentan (multer)

Q ll,

[fileBerbahaya.php

ter cksekusi

Gambar 4. Skenario serangan UFU

middleware multer, yang dikonfigurasi secara rentan,
memproses file tanpa melakukan pemeriksaan yang
memadai terhadap nama file, isi file, maupun ekstensi.
File langsung disimpan ke dalam sistem file server.

Karena tidak ada sanitasi ataupun validasi pada file
tersebut, penyerang dapat mengakses file berbahaya
itu secara langsung dan mengeksekusinya di server.
Hal ini membuka celah Remote Code Execution
(RCE), yang memungkinkan penyerang
mengendalikan server secara ilegal.

Viddiewware Upload pipeline

1 Multer
(POST suplaad)

Flow Uplead & Downlead

inm tolcen ke pragguns
proses cequest W R
=l User

F

1POST rugload Fotoku jpz

<
g oo

8 i
% GET ddownloadTroken]

ses request C\Lb tandler sdownload

-
T]

o 7
a

Ambil file

Token Store
__(map)

Gambar 5. Alur Mitigasi UFU

Pada gambar 6 terdapat alur untuk mencegah serangan
file upload berbahaya; pipeline upload ditingkatkan
dengan tiga lapisan middleware. Multer tetap
digunakan untuk menangani file dari request POST
/upload, namun file disimpan secara sementara di
folder uploads/temp dengan nama acak, bukan
langsung ke lokasi final.

Middleware secureFileUpload kemudian memvalidasi
tipe file menggunakan magic number (bukan hanya
ekstensi), kemudian nama file diubah menjadi UUID
untuk mencegah eksploitasi path, dan file hanya
diproses jika lulus seluruh validasi tersebut.

Middleware generateFileToken membuat token yang
terkait dengan file. Token dibuat menggunakan cypto
dari Node.js menggunakan algoritma SHA256. Token
berlaku dalam batas yang sudah ditentukan, kemudian
token disimpan di token store bersama path file dan
waktu kadaluarsa. Setelah upload berhasil, pengguna
mendapatkan token sebagai gantinya, bukan URL
langsung ke file. Untuk mengunduh file, pengguna
harus mengirim GET /download/:token, vyang
kemudian diverifikasi melalui token store, jika valid
dan belum expired, server mengirimkan file dari
sistem file. Jika tidak valid, request akan ditolak
dengan status 403 forbidden.

Wb Servr e e e wvalaueny)
GEY ek prces) 2 Meneina R . E
Q g — : »
= i Q

Gambar 6. Skenario serangan SSJI

Serangan Server-Side JavaScript Injection (SSJI)
terjadi ketika penyerang mengirimkan permintaan
GET ke endpoint /search dengan parameter berbahaya,
seperti q=require('child process'). @ Web server
menerima permintaan tersebut dan meneruskannya ke
handler route /search, di mana query tersebut diproses
secara langsung menggunakan fungsi eval(query).

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

65

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

Penggunaan eval() di sisi server sangat berisiko karena
akan mengeksekusi string sebagai kode JavaScript,
memungkinkan penyerang untuk menyisipkan dan
menjalankan kode arbitrer. Dalam skenario ini, kode
berbahaya dijalankan di server, dan hasil dari eksekusi
tersebut dikirimkan kembali ke penyerang. Hal ini
membuka peluang besar untuk eksploitasi sistem,
pengambilalihan server, atau pencurian data sensitif.

Fase 1: Penyerangan Fase 2 Dampak
6 Respons
{ isAdmin: true } (palsu)
Q A=
N\
\

1.Post /update-coafig

{*__proto,.™{"isAdain" true}) 3 GET /check-admin ‘ |

\ 2 Fungsi ‘merge’ yang reatan

‘memodifikasi prototipe global

dari prototipe yang tercemar

4 Membuat objek bar

ewartsi 'isAdmin true’

Gambar 7. Skenario serangan Prototype Pollution

Pada gambar 8 merupakan skenario serangan
Prototype Pollution dimulai ketika penyerang
mengirimkan permintaan POST ke endpoint /update-
config dengan payload JSON berbahaya seperti {
" proto_": { "isAdmin": true } }. Permintaan ini
diproses oleh handler /update-config, yang
menggunakan fungsi merge() untuk menggabungkan
konfigurasi. Sayangnya, fungsi ini tidak aman dan

memungkinkan ~ properti _ proto untuk
dimodifikasi. Akibatnya, objek global
Object.prototype tercemar dengan properti baru

isAdmin: true.

Pada fase kedua, ketika pengguna biasa mengakses
endpoint /check-admin, server membuat objek baru
seperti const obj = {} di dalam handler. Karena objek
baru ini mewarisi dari Object.prototype, maka secara
otomatis objek tersebut ikut memiliki properti
isAdmin: true, meskipun tidak pernah diset secara
eksplisit.

Akhirnya, server salah mengenali pengguna biasa
sebagai admin dan merespons dengan data palsu {
isAdmin: true }, sehingga memungkinkan terjadinya
eskalasi hak akses atau pelanggaran otorisasi.

Adur Miigast: Server Side JavaScript Infection
Middleware: preventInjections
o #. Request mawk kedalam
Baquest berhahaya (Tpeoio_} middlesears Secureapp | g | TK PR | oy
il — (€5 mearen)
-
‘Menesike input (query, body)
menemulcan string berbahaya
Proses Dibentikan

Mengirim 403
Forbidden

Gambar 8. Skenario mitigasi SSJI

Untuk mencegah serangan SSJI, sistem
diimplementasikan dengan Middleware keamanan
seperti Secureapp. Ketika request masuk ke server,
Middleware Preventlnjections secara otomatis
memeriksa input dari query string dan body terhadap
pola-pola berbahaya, seperti ?q=__proto__ atau string
lain yang berpotensi disalahgunakan.

Jika ditemukan pola mencurigakan, proses segera
dihentikan sebelum mencapai handler route seperti
/search, dan server mengirimkan respons dengan
status 403 Forbidden. Dengan pendekatan ini, kode
berbahaya tidak pernah dieksekusi, sehingga
melindungi aplikasi dari eksploitasi fungsi-fungsi
JavaScript seperti eval() yang rentan.

Mengembalikan koten asli

POST /upload malicious svg Memanggil fongsi
ﬁ IF . Logic : imsecureSanitizeSve SVG dengan st

-

Victim's Browser

[co0 ——]
. Menygjikan file SVG berbahaya
—

Gambar 9. Skenario serangan xss

Penyerang mengunggah file SVG berbahaya melalui
endpoint POST /upload malicious. SVG, yang di

dalamnya menyisipkan tag <script> untuk
menyuntikkan JavaScript berbahaya.
Web server kemudian memproses file tersebut

menggunakan fungsi sanitasi yang tidak aman
(insecureSanitizeSVG) yang gagal menghapus elemen-
elemen berbahaya seperti <script>. Akibatnya, file
SVG dengan konten berbahaya tetap tersimpan di
sistem file server tanpa pembersihan.

Ketika file SVG ini disajikan ke browser pengguna
(korban), browser merender konten tersebut, termasuk
menjalankan skrip yang tertanam. Hal ini
menyebabkan serangan XSS berhasil, memungkinkan
penyerang mencuri data sensitif, menyalahgunakan
sesi, atau memanipulasi tampilan halaman.

Skenario Milgasi XSS

Mengembaikan konten asi

POST isplasd malicions svg Memanggil fangsi T

Menghapus tag <seript>.

Q

'I"’,
Victims Browser

‘Browses merender
. T m

Gambear 10. Skenario Mitigasi XSS

Menyajikan fle SVG aman

Gambar 11 merupakan skenario mitigasi cross-site
scripting. Skenario di atas dimulai dari mencegah
serangan XSS melalui file SVG, @ server

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

66

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

mengimplementasikan fungsi pembersih yang aman,
seperti Middleware secureSanitizeSVG. — Saat
penyerang mengunggah file SVG berbahaya melalui
POST /upload malicious. SVG, server memanggil
fungsi ini untuk menyaring elemen berbahaya,
termasuk tag <script>.

Fungsi sanitasi tersebut secara otomatis menghapus
skrip atau atribut yang dapat dieksploitasi, lalu
menyimpan versi bersih file SVG ke dalam sistem file.

Ketika file SVG yang telah dibersihkan disajikan ke
browser korban, browser hanya akan merender gambar
tanpa menjalankan skrip apa pun. Dengan demikian,
tampilan tetap aman dan serangan XSS berhasil
dicegah.

3.2. Analisis Pengujian Unrestricted File Upload

Pengujian UFU dilakukan dengan mensimulasikan
tiga vektor serangan utama, seperti path traversal,
mime type spoofing, dan unggahan file dengan konten
berbahaya xss melalui SVG.

Payload yang Digunakan: Sebuah file dikirim dengan
nama .././test.txt. Tujuannya adalah untuk mencoba
menulis file di luar direktori unggahan yang telah
ditentukan. Dalam pembuatan skenario terdapat dua
respon diantaranya:

1. Response Aplikasi Rentan

Aplikasi rentan menerima file tersebut dan,
karena menggunakan file.originalname tanpa
sanitasi, ia mencoba menulis file ke path relatif
uploads/safe/../. ./test.txt. ~ Bergantung pada
konfigurasi server, ini dapat mengakibatkan file
ditulis di direktori root aplikasi, yang
merupakan celah keamanan serius. Pengujian
mengkonfirmasi bahwa permintaan ini diterima
dengan status 200 OK dan nama file berbahaya
tidak diubah.

2. Response Aplikasi Aman
Aplikasi yang dilindungi oleh
securityMiddleware. js menerima unggahan file,
namun Middleware mengabaikan sepenuhnya
nama file yang dikirim klien. Sebaliknya, ia
menghasilkan nama file baru yang unik
menggunakan UUID (misalnya, alb2c3d4-
e5f6-....ext). Permintaan berhasil dengan status
200 OK, tetapi serangan Path Traversal
sepenuhnya digagalkan.

Dengan tidak menggunakan nama file yang disediakan
klien, Middleware menghilangkan vektor serangan
Path Traversal pada akarnya. Hal ini sejalan dengan
temuan dari studi (In)Security of File Uploads in
Node.js yang menekankan bahwa validasi nama file
adalah salah satu dari tiga pilar penting keamanan
unggahan. Berikut ini cuplikan kode pengujian Jest
yang bisa dilihat pada gambar 12,

Gambar 11. Skenario pengujian mitigasi path traversal

Pengujian MIME Type Spoofing dilakukan dengan
sebuah file skrip JavaScript (fake-image.js) diunggah,
namun dengan filename diubah menjadi not-a-
scriptpng dan header Content-Type diatur ke
image/png.

1. Response Aplikasi Rentan
Aplikasi rentan hanya memeriksa header
Content-Type. Karena nilainya adalah
image/png (yang ada di dalam daftar putih),
unggahan diterima. File skrip berbahaya
berhasil disimpan di server dengan nama .png

2. Response Aplikasi Aman
Middleware secureFileUpload menerima file
di lokasi sementara. Kemudian, 1ia
menggunakan library file-type untuk
membaca beberapa byte pertama dari file
(magic numbers). Library ini
mengidentifikasi konten file sebagai
application/JavaScript, yang tidak ada dalam
daftar allowedMimeTypes. Akibatnya, file
sementara dihapus dan permintaan ditolak
dengan status 415 Unsupported Media Type.

Ini membuktikan bahwa validasi sisi server yang
berbasis pada konten file (bukan metadata yang
dikirim klien) adalah mekanisme pertahanan yang
krusial dan efektif. Mitigasi ini berhasil memblokir
serangan yang akan lolos dari filter sederhana.

Pengujian Xss dilakukan dengan sebuah file SVG yang
valid (malicious.SVG) yang berisi tag JavaScript
tersembunyi, seperti <SVG onload="alert("XSS')">.

1. Response Aplikasi Rentan
Aplikasi rentan, yang tidak memiliki
mekanisme sanitasi konten, menerima dan
menyimpan file SVG berbahaya ini apa
adanya. Jika file ini kemudian ditampilkan di
browser klien, skrip akan dieksekusi,
menyebabkan serangan Stored XSS.

2. Response Aplikasi Aman
Aplikasi aman, yang menggunakan
Middleware secureSanitizeSVG, mem-parsing
konten file SVG sebelum menyimpannya.
Middleware ini secara spesifik
mengidentifikasi dan menghapus tag <script>
serta atribut event handler seperti onload. File
yang disimpan menjadi aman dan tidak lagi
dapat mengeksekusi kode JavaScript.

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

67

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

Ini menunjukkan pentingnya lapisan pertahanan
ketiga, yaitu sanitasi konten. Bahkan jika tipe file
diizinkan (seperti SVG), kontennya tetap bisa
berbahaya. Mitigasi ini secara efektif menetralkan
ancaman tanpa harus menolak tipe file yang secara
fungsional dibutuhkan.

Pengujian SSJI berfokus pada kemampuan aplikasi
untuk menahan upaya injeksi kode dan manipulasi
objek. Payload yang digunakan (string 100-50)
dikirim sebagai parameter query ke endpoint/search
yang menggunakan eval()

1. Response Aplikasi Rentan

Server mengeksekusi string tersebut sebagai
kode JavaScript dan mengembalikan
hasilnya, yaitu 50. Ini mengkonfirmasi bahwa
server rentan terhadap eksekusi kode arbitrer.
Response Aplikasi Aman

Middleware Preventlnjections ~memeriksa
semua input yang masuk. Regex
(\beval\b[Function\s*\(]...) tidak cocok karena
payload tidak mengandung kata kunci
berbahaya secara eksplisit. Namun, jika
payload diubah menjadi eval('100-50"),
Middleware akan mendeteksinya. Permintaan
yang aman (tanpa kode) diteruskan, tetapi
dieksekusi oleh route handler yang aman
yang hanya memperlakukan input sebagai
string, sehingga mengembalikan "Hasil
pencarian untuk: 100-50"

Meskipun Middleware berbasis pola Regex efektif
untuk memblokir kata kunci yang jelas-jelas
berbahaya, mitigasi terbaik tetaplah dengan tidak
menggunakan eval() di route handler. Middleware
berfungsi sebagai jaring pengaman, tetapi praktik
pengkodean yang aman adalah pertahanan utamanya.

Pengujian Prototype Pollution dengan menggunakan
sebuah objek JSON yang berisi kunci _ proto
seperti { < proto_ ":{“isAdmin”:true}}, dikirim
melalui request body ke endpoint/update-config

1. Response Aplikasi Rentan

Aplikasi rentan, yang menggunakan fungsi
merge objek yang tidak aman, tanpa sadar
memodifikasi ~ Object.prototype global.
Pengujian ini diverifikasi dengan melakukan
request kedua ke endpoint lain (/check-
admin) yang menunjukkan bahwa semua
objek baru sekarang memiliki properti
isAdmin: true.

Response Aplikasi Aman

Middleware Preventlnjections secara rekursif
memindai objek input untuk mencari kunci
berbahaya (__proto__, constructor,
prototype). Ketika proto ditemukan,
permintaan segera diblokir dengan status 403
Forbidden sebelum dapat mencapai logika
aplikasi.

Ini menunjukkan efektivitas pendekatan proaktif
dalam memfilter input. Dengan memblokir pola yang
diketahui berbahaya di tingkat Middleware, seluruh
aplikasi terlindungi dari kerentanan Prototype
Pollution yang mungkin ada di berbagai fungsi atau
library yang digunakannya. Berikut ini cuplikan kode
pengujian yang bisa dilihat pada Gambar 13.

(secureApp) .

(secureApp).

Gambar 12. Skenario pengujian mitigasi Prototype Pollution
3.3. Hasil

Pada tahap ini, dilakukan pengujian untuk
mengevaluasi efektivitas dan efisiensi model mitigasi
yang diusulkan. Pengujian dibagi menjadi dua bagian
utama: uji keamanan fungsional untuk memvalidasi
kemampuan mitigasi dalam memblokir serangan, dan
uji kinerja untuk mengukur overhead yang
ditimbulkan. Pengujian keamanan fungsional yang
dilakukan menggunakan Jest menunjukkan bahwa
aplikasi yang diamankan dengan Middleware yang
diusulkan berhasil memblokir 100% dari 33 skenario
serangan yang diujikan. Tabel 1 merangkum
perbandingan hasil antara aplikasi rentan dan aplikasi
aman yang bisa dilihat hasil code coverage-nya pada
Table 1.

Tabel 1. Hasil code coverage

File Ystatements %Branch % Functions %
Lines

Security 100% 93.33% 100% 100%

Middleware.js

secureApp.js 88.00% 70.00% 80.00% 88%

vulnerableApp.js 91.17% 71.42% 85.71% 91.17
%

Rata-rata Proyek 93.85% 80.85% 88.88% 93.80
%

Hasil pada tabel 1 menunjukkan bahwa

securityMiddleware.js, yang merupakan file inti dari
implementasi model mitigasi, mencapai cakupan kode
yang sangat tinggi. Dengan cakupan Statements,
Functions, dan Lines yang mencapai 100%, ini

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

68

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

menandakan bahwa setiap baris kode dan setiap fungsi
di dalam Middleware keamanan telah dieksekusi
sedikitnya satu kali oleh skenario pengujian. Skenario
uji bisa dilihat pada table 2.

Tabel 2. Skenario Uji

Kategori Jumlah Deskripsi Hasil
Kerentanan Skenario singkat Mitigasi

Unrestricted ~ File 10 Path traversal 100%
Upload Blocked

Server-Side 8 Injeksi eval() 100%
Javascript Injection Blocked

Cross-Site Scripting 5 File SVG dengan 100%
tag <script> Blocked

Prototype Pollution 10 Manipulasi Json ~ 100%
Blocked

Hasil pengujian fungsional menunjukkan tingkat
keberhasilan 100% pada seluruh 33 skenario uji.
Analisis mendalam terhadap hasil ini mengungkap
bahwa efektivitas model terletak pada arsitektur
validasi hibrida yang diterapkan. Pada kasus
Unrestricted File Upload (UFU), keberhasilan
mitigasi didorong oleh pemisahan antara metadata
yang dikirim klien (ekstensi/MIME type) dengan
properti fisik file sebenarnya. Penggunaan magic
numbers terbukti mampu mendeteksi pemalsuan tipe
file yang lolos dari validasi standar Multer. Lebih
lanjut, strategi penggantian nama file menjadi UUID
secara efektif memutus rantai serangan Path Traversal
dengan menghilangkan referensi ke direktori sistem.

Hasil pengujian ini sejalan dengan temuan [14], yang
menyatakan bahwa ketergantungan pada validasi
ekstensi file saja tidak memadai untuk mencegah
serangan Unrestricted File Upload (UFU). Penelitian
ini membuktikan bahwa validasi konten (magic
numbers) yang diterapkan pada middleware berhasil
memitigasi risiko yang terlewatkan oleh /ibrary. Selain
itu, efektivitas pemblokiran fungsi eval() dan pola
berbahaya lainnya mendukung penelitian [12].
Mengenai bahaya eksekusi kode dinamis pada Server-
Side Javascript Injection. Pendekatan hybrid yang
diusulkan dalam penelitian ini mengisi celah
keamanan yang disebutkan oleh [13]. Terkait
Prototype Pollution dengan memblokir akses ke
property proto sebelum mencapai logika aplikasi.

3.4. Hasil Uji Performance

Untuk mengevaluasi dampak performa dari penerapan
middleware mitigasi terhadap fitur file upload,
dilakukan pengujian beban menggunakan skenario
simultan sebanyak 500 dan 1000 threads [20].
Pengujian ini membandingkan performa sistem dengan
dan tanpa middleware pada tiga metrik utama: connect

time, elapsed time, dan latency, yang seluruhnya
diukur dalam satuan milidetik (ms).

Ringkasan hasil perbandingan performa antara sistem
rentan (sebelum mitigasi) dan sistem aman (sesudah
mitigasi dapat dilihat pada table 3 berikut :

Tabel 3. Perbandingan Performa Sebelum dan Sesudah Mitigasi

Metrik Beban Tanpa Dengan Overhead
Middleware Middleware

Connect 500 1.31ms 0.64ms -0.67ms
Time

1000 0.67ms 1.06ms +0.39ms
Elapsed 500 4.72ms 4.99ms +4.54ms
Time

1000 2.35ms 6.89ms +0.29ms
Latency 500 4.69ms 4.98ms +0.29

1000 2.34ms 6.87ms +4.53

Perbandingan Rata-Rata Connect Time
1.3]

BN 500 Threads
- B 1000 Threads

Connect Time (ms)

B C
Skenario Pengujian

Keterangan:

A = With Middleware
B = With Middleware
€ = Without Middleware
D = Without Middleware

Gambar 13. Perbandingan Connect Time

Perbandingan Rata-Rata Elapsed Time
6,89

| - 500 Threads
N 1000 Threads

4.99

Elapsed Time (ms)

B c
Skenario Pengujian

Keterangan:

A= With Middleware
B = With Middleware
€= Without Middleware
D = Without Middleware

Gambar 14. Perbandingan elapsed time

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

69

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

Gambar 14 menunjukkan perbandingan waktu koneksi
awal antar klien dan server. Sistem tanpa Middleware
menunjukkan hasil waktu koneksi lebih cepat secara
konsisten, terutama pada skenario 1000 threads
dengan waktu rata-rata 0.67 ms dibandingkan dengan
1.06 ms saat menggunakan Middleware. Pada skenario
500 threads, waktu koneksi sistem tanpa Middleware
adalah 1.31 ms, sedikit lebih tinggi dibandingkan
Middleware (0.64 ms), menunjukkan inkonsistensi
kecil yang masih dalam batas wajar.

Gambar 15 memperlihatkan hasil waktu total
permintaan dari awal hingga akhir (elapsed time).
Middleware menambah beban proses yang cukup
signifikan pada skenario 1000 threads, yaitu 6.89 ms,
dibandingkan hanya 2.35 ms tanpa Middleware. Hal
serupa terjadi pada 500 threads, dengan Middleware
memakan waktu 4.99 ms, sedangkan tanpa
Middleware hanya 4.72 ms. Hasil ini menunjukkan
bahwa walaupun Middleware menambah sedikit waktu
eksekusi, skalanya masih dalam batas yang dapat
diterima untuk aplikasi berskala sedang.

Perbandingan Rata-Rata Latency
6.40

Jumlah Thread
W 500 Threads
BN 1000 Threads

Latency (ms)

Skenario Pengujian

Keterangan:
A: With Middleware (500 Threads)
B: With Middleware (1000 Threads)

C: Without Middleware (300 Threads)

D: Without Middleware (1000 Threads)

Gambar 15. Perbandingan latency

Metrik latency yang ditampilkan pada Gambar 16
mengukur waktu tunda antara permintaan dan respons
server. Pada pengujian 1000 threads, latency dengan
Middleware tercatat sebesar 6.87 ms, lebih tinggi dari
tanpa Middleware sebesar 2.34 ms. Pada skenario 500
threads, Middleware menghasilkan latency 4.98 ms
dibandingkan 4.69 ms tanpa Middleware. Lonjakan
latency ini sebanding dengan beban kerja tambahan
dari proses validasi dan sanitasi berlapis pada
Middleware.

Peningkatan latensi ini disebabkan oleh proses validasi
tambahan di sisi server yang dilakukan oleh
Middleware, seperti pembacaan konten file untuk
verifikasi magic number dan proses sanitasi. Metrik
connect time tidak menunjukkan perbedaan yang
signifikan, yang mengindikasikan bahwa overhead
terjadi pada level pemrosesan aplikasi, bukan pada

level koneksi jaringan. Meskipun terjadi penurunan
kinerja, overhead ini bersifat konsisten dan tidak
menyebabkan kegagalan sistem (error rate tetap 0%)
di bawah beban. Hal ini menunjukkan bahwa
Middleware dapat diimplementasikan dalam aplikasi
nyata, dengan trade-off yang dapat diterima antara
sedikit penurunan performa dan peningkatan
keamanan yang sangat signifikan.

4. Kesimpulan

Penelitian ini menyimpulkan bahwa kerentanan
Server-Side JavaScript Injection (SSJI) dan
Unrestricted File Upload (UFU) merupakan

konsekuensi langsung dari karakteristik dasar bahasa
JavaScript dan ketergantungan tinggi terhadap pustaka
eksternal dalam ekosistem Node.js. Fitur seperti
eksekusi kode dinamis dan manipulasi prototipe
menjadi vektor utama serangan, sementara minimnya
validasi bawaan dalam modul upload file membuka
peluang eksploitasi terhadap jalur file, konten, dan
kontrol akses.

Sebagai respons terhadap permasalahan tersebut, telah
berhasil dirancang dan diimplementasikan sebuah
model mitigasi berlapis dalam bentuk Middleware
modular untuk Express.js. Model ini menggabungkan
pencegahan injeksi berbasis pola, validasi unggahan
berbasis konten dan struktur nama file, serta otorisasi
akses file berbasis time-bound token. Pendekatan ini
menyatukan metode reaktif dan proaktif untuk
mencapai perlindungan yang komprehensif terhadap
berbagai kelas serangan yang relevan dalam konteks
aplikasi Node.js.

Evaluasi empiris menunjukkan bahwa model mitigasi
ini mampu memblokir seluruh skenario serangan yang
diuji, serta mencakup jalur logika secara penuh dalam
pengujian dengan cakupan kode 100%. Validasi
berlapis terbukti efektif dalam mencegah manipulasi
jalur (path traversal), spoofing MIME type, injeksi
XSS berbasis SVG, serta serangan SSJI dan Prototype
Pollution. Temuan ini mengonfirmasi bahwa arsitektur
mitigasi yang dirancang mampu secara signifikan
meningkatkan ketahanan aplikasi terhadap kerentanan
kritis yang umum ditemukan dalam pengembangan
JavaScript sisi server. Temuan ini mengonfirmasi
bahwa arsitektur mitigasi yang dirancang mampu
secara signifikan meningkatkan ketahanan aplikasi
terhadap kerentanan kritis yang umum ditemukan
dalam pengembangan JavaScript sisi server.

Penelitian selanjutnya disarankan untuk:

1. Menguji efektivitas middleware pada arsitektur
microservices dan lingkungan cloud serverless
untuk melihat dampak latensi jaringan yang
lebih nyata.

Mengembangkan mekanisme deteksi berbasis
Machine Learning untuk mengenali pola injeksi
yang lebih kompleks yang mungkin lolos dari

filter berbasis Regex.

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

70

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

Melakukan

analisis keamanan terhadap vektor

serangan Regular Expression Denial of Service
(ReDoS) mengingat penggunaan Regex yang intensif
pada middleware ini.

Reference

(1]

(2]

[3]

(4]

[3]

(6]

(7]

(8]

]

H. Hong, S. Woo, and S. Park, “CIRCUIT: A JavaScript
Memory Heap-Based Approach for Precisely Detecting
Cryptojacking Websites,” IEEE Access, vol. 10, no.
September, pp- 95356-95368, 2022, doi:
10.1109/ACCESS.2022.3204814.

T. Brito et al., “Study of JavaScript Static Analysis Tools for
Vulnerability Detection in Node.js Packages,” IEEE Trans.
Reliab., vol. 72, no. 4, pp. 1324-1339, 2023, doi:
10.1109/TR.2023.3286301.

S. An, A. Leung, J. B. Hong, T. Eom, and J. S. Park, “Toward
Automated Security Analysis and Enforcement for Cloud
Computing Using Graphical Models for Security,” IEEE
Access, vol. 10, no. June, pp. 75117-75134, 2022, doi:
10.1109/ACCESS.2022.3190545.

S. Fugkeaw and S. Rattagool, “FPRESSO: Fast and Privacy-
Preserving SSO Authentication With Dynamic Load
Balancing for Multi-Cloud-Based Web Applications,” IEEE
Access, vol. 12, no. September, pp. 157888-157900, 2024,
doi: 10.1109/ACCESS.2024.3485996.

Y. Chen et al., “Understanding the Security Risks of Websites
Using Cloud Storage for Direct User File Uploads,” IEEE
Transactions on Information Forensics and Security, vol. 20,
pp. 2677-2692, 2025, doi: 10.1109/TIFS.2025.3544082.

M. Alfadel, N. A. Nagy, D. E. Costa, R. Abdalkareem, and E.
Shihab, “Empirical analysis of security-related code reviews
in npm packages,” Journal of Systems and Software, vol. 203,
p. 111752, 2023, doi: 10.1016/j.jss.2023.111752.

S. Calzavara, S. Casarin, and R. Focardi, “Dynamic Security
Analysis of JavaScript: Are We There Yet?,” WWW 2025 -
Proceedings of the ACM Web Conference, pp. 1105-1115,
2025, doi: 10.1145/3696410.3714614.

M. Kang et al., “Scaling JavaScript Abstract Interpretation to
Detect and Exploit Node.js Taint-style Vulnerability,” Proc.
IEEE Symp. Secur. Priv., vol. 2023-May, pp. 1059-1076,
2023, doi: 10.1109/SP46215.2023.10179352.

L. Yan, G. Zhao, X. Li, and P. Sun, “Secure software
development: leveraging application call graphs to detect
security vulnerabilities,” Peer] Comput. Sci., vol. 11, pp. 1-
26, 2025, doi: 10.7717/PEERJ-CS.2641.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. B. I. N. Muzammil, M. Bilal, S. Ajmal, S. C. Shongwe,
and Y. Y. Ghadi, “Unveiling Vulnerabilities of Web Attacks
Considering Man in the Middle Attack and Session
Hijacking,” IEEE Access, vol. 12, no. January, pp. 6365—
6375, 2024, doi: 10.1109/ACCESS.2024.3350444.

M. F. Rozi and T. A. O. Ban, “Detecting Malicious JavaScript
Using Structure-Based Analysis of Graph Representation,”
IEEE Access, vol. 11, no. September, pp. 102727-102745,
2023, doi: 10.1109/ACCESS.2023.3317266.

C. Ntantogian, P. Bountakas, D. Antonaropoulos, C. Patsakis,
and C. Xenakis, “NodeXP: NOde.js server-side JavaScript
injection vulnerability DEtection and eXPloitation,” Journal
of Information Security and Applications, vol. 58, no.
January, p. 102752, 2021, doi: 10.1016/j.jisa.2021.102752.

S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js
prototype pollution vulnerabilities via object lookup
analysis,” ESEC/FSE 2021 - Proceedings of the 29th ACM
Joint Meeting European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
pp. 268-279, 2021, doi: 10.1145/3468264.3468542.

H. Oz, A. Acar, A. Aris, A. Kharraz, and S. Uluagac, “(In)
Security of File Uploads in Node.js,” pp. 1573-1584, doi:
10.1145/3589334.3645342.

A. Sajadi, B. Le, A. Nguyen, K. Damevski, and P. Chatterjee,
“Do LLMs consider security? an empirical study on responses
to programming questions,” vol. 123, pp. 1-29, 2025, doi:
10.1007/s10664-025-10658-6.

K. Iwamura, A. Akmal, and A. Mohd, “Secure User
Authentication With Information Theoretic Security Using
Secret Sharing-Based Secure Computation,” IEEE Access,
vol. 13, no. January, pp. 9015-9031, 2025, doi:
10.1109/ACCESS.2025.3526632.

M. Ferreira, 1. 1. S. Técnico, and U. De Lisboa, “Efficient
Static Vulnerability Analysis for JavaScript with Multiversion
Dependency Graphs,” vol. 8, no. June, 2024, doi:
10.1145/3656394.

S. A. Ebad, “Exploring How to Apply Secure Software
Design Principles,” IEEE Access, vol. 10, no. September, pp.
128983-128993, 2022, doi: 10.1109/ACCESS.2022.3227434.
R. A. Khan, “Evaluating Performance of Web Application
Security Through a Fuzzy Based Hybrid Multi-Criteria
Decision-Making Approach: Design Tactics Perspective,”
vol. 8, 2020.

A. N. Syauqi and N. Q. Nada, “Analisis Kinerja Website
Informatika UPGRIS melalui Pengujian Performa
Menggunakan JMeter,” in Prosiding Seminar Nasional
Informatika, 2023, pp. 965-971.

Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

71

