
 Received: 24-07-2025 | Revised: 25-12-2025 | Accepted: 29-12-2025 | Published: 31-01-2026

62

Published online on: https://journal.uii.ac.id/jurnalsnati/

DOI: 10.20885/snati.v5.i1.42248

Jurnal Sains, Nalar, dan Aplikasi

Teknologi Informasi
 Vol. 5 No. 1 (2026) 62 - 71 ISSN Media Electronic: 2807-5935

Implementasi Mitigasi Berlapis Kerentanan Unrestricted File Upload dan

Server-Side JavaScript Injection

Implementation Layered Mitigation Techniques for Unrestricted File Upload and Server-Side

JavaScript Injection

Salman Akbar Hasbullah1, Mohamad Nurkamal Fauzan2, Roni Andarsyah3*

1,2,3 Program Studi D4 Teknik Informatika, Sekolah Vokasi, Universitas Logistik dan Bisnis Internasional, Bandung,

Indonesia
11214073@std.ulbi.ac.id, 2m.nurkamal.f@ulbi.ac.id, 3*roniandarsyah@ulbi.ac.id

Abstract

The popularity of Node.js as a server-side application development platform has introduced new security challenges

stemming from the dynamic features of JavaScript. Vulnerabilities such as Unrestricted File Upload (UFU) and Server-Side

JavaScript Injection (SSJI) often arise from insecure input handling and over-reliance on third-party libraries. This research

aims to design, implement, and evaluate a multi-layered security mitigation model for Node.js-based web applications built

using the Express.js framework. A constructive research approach was employed, wherein hybrid security middleware was

developed to enforce comprehensive validation. This middleware integrates content-based file type validation (magic

numbers), file name sanitization to prevent path traversal, and malicious input pattern blocking to mitigate SSJI and

prototype pollution. The effectiveness of the model was empirically evaluated within a controlled local testing environment

using the Jest testing framework by comparing a vulnerable application against its secured counterpart. Test results

demonstrate that the proposed mitigation model successfully blocked 100% of the tested attack scenarios, achieving 100%

test code coverage on the core security logic. This research yields a practical solution capable of enhancing the resilience of

Node.js applications against common attacks exploiting language-specific features

Keywords: Node.js; Unrestricted File Upload; Server-Side JavaScript Injection; Security Middleware

Abstrak

Popularitas Node.js sebagai platform pengembangan aplikasi sisi server telah membawa tantangan keamanan baru yang

bersumber dari fitur-fitur dinamis JavaScript. Kerentanan seperti Unrestricted File Upload (UFU) dan Server-Side

JavaScript Injection (SSJI) seringkali muncul akibat penanganan input yang tidak aman dan kepercayaan berlebih pada

library pihak ketiga. Penelitian ini bertujuan untuk merancang, mengimplementasikan, dan mengevaluasi sebuah model

mitigasi keamanan berlapis untuk aplikasi web berbasis Node.js yang dibangun menggunakan framework Express.js. Metode

yang digunakan adalah pendekatan penelitian konstruktif, di mana sebuah middleware keamanan hibrida dikembangkan

untuk menerapkan validasi komprehensif. Middleware ini mengintegrasikan validasi tipe file berbasis magic number, sanitasi

nama file untuk mencegah path traversal, serta pemblokiran pola input berbahaya untuk menanggulangi SSJI dan prototype

pollution. Efektivitas model dievaluasi secara empiris dalam lingkungan pengujian lokal yang terkontrol menggunakan

framework pengujian Jest dengan membandingkan aplikasi yang rentan dengan aplikasi yang telah diamankan. Hasil

pengujian menunjukkan bahwa model mitigasi yang diusulkan berhasil memblokir 100% skenario serangan yang diujikan,

dengan cakupan kode pengujian mencapai 100% pada logika inti keamanan. Penelitian ini menghasilkan sebuah solusi

praktis yang dapat meningkatkan ketahanan aplikasi Node.js terhadap serangan umum yang berbasis pada fitur bahasa.

Kata kunci: Node.js; Unrestricted File Upload; Server-Side JavaScript Injection; Middleware keamanan

1. Pendahuluan

Popularitas JavaScript sebagai bahasa pemrograman

sisi server, yang didorong oleh ekosistem Node.js,

telah mengubah cara aplikasi web modern dibangun

[1-2]. Kemampuannya dalam menangani operasi I/O

asinkron membuatnya efisien untuk aplikasi yang

membutuhkan skalabilitas tinggi [3-4]. Namun, adopsi

yang luas ini diiringi dengan peningkatan vektor

ancaman dan kerentanan keamanan yang signifikan [5-

6]. Sifat dinamis JavaScript, fleksibilitas fitur-fiturnya,

dan interaksinya yang kompleks dengan berbagai API

[7] dapat secara tidak sengaja memperkenalkan celah

keamanan jika tidak dikelola dengan hati-hati [8-9].

Keamanan aplikasi web menjadi semakin krusial,

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

63

mengingat potensi serangan siber yang terus

berkembang [10-11].

Penelitian sebelumnya telah menyoroti berbagai risiko

spesifik dalam ekosistem Node.js. Studi oleh

Ntantogian et al. [12] mendemonstrasikan bahaya

Server-Side JavaScript Injection (SSJI) yang timbul

dari penyalahgunaan fitur eksekusi kode dinamis [13].

Di sisi lain, Oz et al. [14] mengungkap bahwa library

unggah file populer seringkali gagal memberikan

perlindungan yang memadai terhadap serangan

Unrestricted File Upload (UFU). Kerentanan lain

yang berakar pada sifat dinamis JavaScript adalah

Prototype Pollution, di mana manipulasi objek dapat

mengubah perilaku aplikasi secara global [15-16].

Tantangan dalam menganalisis kode JavaScript yang

dinamis juga menjadi perhatian utama [17], yang

menunjukkan adanya kesenjangan (gap) antara

kebutuhan keamanan dan kemampuan alat yang

tersedia. Praktik pengembangan perangkat lunak yang

aman (secure SDLC) dan proses code review yang

efektif menjadi sangat penting dalam konteks ini,

meskipun seringkali sulit diterapkan secara konsisten

[18-19].

Meskipun SSJI dan UFU merupakan kelas kerentanan

yang telah dikenal, mitigasi yang ada seringkali

bersifat parsial dan reaktif [13]. Penelitian ini

bertujuan untuk merancang, mengimplementasikan,

dan mengevaluasi sebuah model keamanan hibrida

yang mengintegrasikan validasi sisi server yang kuat

dengan mekanisme otorisasi modern seperti time-

bound token. Pendekatan berlapis ini diharapkan dapat

menciptakan solusi yang lebih tangguh, efisien, dan

komprehensif. Oleh karena itu, tujuan dari penelitian

ini adalah untuk menganalisis cara kerja dan sumber

kerentanan Server-Side JavaScript Injection (SSJI) dan

Unrestricted File Upload (UFU) dalam lingkungan

Node.js/Express.js, merancang serta

mengimplementasikan model mitigasi berlapis yang

mengintegrasikan beberapa lapisan pertahanan seperti

validasi konten file, sanitasi nama file, dan pemfilteran

input berbahaya, serta mengukur efektivitas dan

dampak kinerja dari model gabungan tersebut melalui

pengujian fungsional dan pengujian beban secara

komparatif terhadap pendekatan yang tidak

menggunakan mitigasi.

Untuk menjaga fokus penelitian serta memastikan

kedalaman analisis, ruang lingkup, dan batasan

masalah dalam penelitian ini ditetapkan sebagai

berikut:

1. Fokus penelitian pada kerentanan Unrestricted

File Upload dan Server-Side JavaScript

Injection serta dampaknya (XSS, Prototype

Pollution)

2. Implementasi dilakukan pada lingkungan

runtime Node.js menggunakan framework

Express.js.

3. Pengujian performa berfokus pada metrik

Connect Time, Elapsed Time, dan Latency

menggunakan beban 500 hingga 1000 threads

4. Mekanisme keamanan diterapkan sebagai

Middleware sisi server, tidak mencakup

keamanan sisi klien atau konfigurasi firewall

2. Metodologi Penelitian

Penelitian ini menggunakan pendekatan penelitian

konstruktif, di mana fokus utamanya membangun

sebuah artefak; dalam hal ini, sebuah framework

mitigasi perangkat lunak untuk menyelesaikan

masalah praktis yang telah teridentifikasi. Proses

penelitian ini dilaksanakan melalui empat fase utama

yang terstruktur: pertama, tahap analisis dan

perancangan yang berfokus pada identifikasi

kerentanan serta perancangan arsitektur mitigasi;

kedua, implementasi mitigasi sisi server dengan

membangun middleware keamanan untuk menangani

UFU dan SSJI; ketiga, implementasi otorisasi time-

bound token sebagai mekanisme kontrol akses

terhadap file yang diunggah; dan keempat, pengujian

serta evaluasi komparatif untuk mengukur efektivitas

dan dampak kinerja dari sistem yang telah diamankan

dibandingkan dengan sistem tanpa mitigasi.

Gambar 1. Alur proses penelitian

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

64

Gambar 1 merupakan tahapan alur penelitian yang

menggunakan pendekatan konstruktif; tiap fase

memiliki tujuan spesifik tertentu untuk menghasilkan

komponen yang dapat dievaluasi.

2.1. Analisis dan Perancangan

Tahapan awal ini berfokus pada pengembangan

landasan teoritis dan konseptual untuk penelitian.

Aktivitas utama pada fase ini adalah sebagai berikut:

1. Studi Literatur Sistematis PRISMA melakukan

tinjauan terhadap 41 artikel ilmiah untuk

mengidentifikasi fitur-fitur JavaScript yang

berisiko di lingkungan server-side dan jenis-

jenis kerentanan yang terkait.

2. Mengidentifikasi Fitur & Kerentanan dari

kerentanan Unrestricted File Upload dan

Server-Side JavaScript Injection.

3. Merancang Desain Arsitektur Mitigasi dengan

framework keamanan hibrida. Desain ini

mencakup pembuatan middleware dan

pembuatan model untuk otorisasi unggahan file

menggunakan time-bound token.

2.2. Implementasi Mitigasi Sisi Server

Fokus dari Fase ini adalah pengembangan komponen

dari inti framework keamanan di sisi server.

2.2.1. Implementasi Middleware UFU

Mengembangkan middleware untuk Node.js yang

menggabungkan tiga lapisan validasi: pemeriksaan

tipe file berbasis magic numbers (konten), sanitasi

nama file dengan menghasilkan UUID, dan (opsional)

sanitasi konten dasar.

2.2.2. Implementasi Middleware SSJI

Mengembangkan middleware untuk mendeteksi dan

memblokir payload berbahaya yang menargetkan SSJI

dan Prototype Pollution. Ini melibatkan penggunaan

regular expressions untuk mencocokkan pola kode

yang berbahaya dan validasi properti objek untuk

mencegah polusi prototipe.

2.3. Implementasi Otorisasi Time-bound Token

Fase ini didedikasikan untuk membangun komponen

kedua dari model keamanan, yaitu arsitektur unggahan

file yang lebih modern, dengan mengimplementasikan

server otorisasi yang mengembalikan endpoint API

pada server Node.js yang bertugas membuat token

yang aman dan berbatas waktu (time-bound token)

sebagai respons atas permintaan unggahan dari klien.

2.4. Pengujian dan Evaluasi Komparatif

Fase terakhir ini berfokus pada validasi dari solusi

yang telah dibangun, antara lain:

1. Pembuatan Skenario Uji: Merancang dan

mengimplementasikan serangkaian test cases

otomatis menggunakan framework Jest.

Skenario uji ini mencakup berbagai payload

serangan untuk UFU dan SSJI.

2. Eksekusi Pengujian Komparatif: Menjalankan

test suite terhadap kedua aplikasi (rentan dan

aman) untuk membandingkan hasilnya. Metrik

utama yang diukur adalah tingkat keberhasilan

serangan (apakah berhasil diblokir atau tidak).

3. Hasil dan Pembahasan

Bab ini merinci proses eksperimen yang dilakukan

untuk menguji dan mengevaluasi efektivitas model

mitigasi yang diusulkan. Eksperimen dirancang untuk

memvalidasi kemampuan framework dalam mengatasi

kerentanan Unrestricted File Upload (UFU) dan

Server-Side JavaScript Injection (SSJI), serta

kerentanan terkait seperti Cross-Site Scripting (XSS)

dan Prototype Pollution. Pengujian dilakukan secara

komparatif pada dua lingkungan: aplikasi yang sengaja

dibuat rentan (sebelum mitigasi) dan aplikasi yang

telah diamankan menggunakan middleware yang

dikembangkan (sesudah mitigasi).

3.1. Lingkungan Pengujian

Terdapat dua target aplikasi server Node.js/Express

yang telah disiapkan

3.1.1. Aplikasi Rentan (vulnerableApp.js)

Sebuah aplikasi dasar yang mengimplementasikan

fitur upload file dan pencarian dengan validasi

minimal, sengaja dirancang untuk rentan terhadap

serangan UFU dan SSJI.

Gambar 1. Kode yang rentan terhadap UFU

Gambar 2 merupakan contoh kode multer yang

rentan,dikarenakan menggunakan nama file asli, yang

rentan terhadap path traversal

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

65

Gambar 2. Kode tanpa validasi

Gambar 3. Kode rentan terhadap SSJI

Pada gambar 3, salah satu handler/upload yang rentan

dikarenakan tidak ada validasi atau middleware yang

diberikan. Sedangkan pada gambar 4, terdapat fungsi

eval() yang akan mengeksekusi semua kode

JavaScript yang diberikan, termasuk kode berbahaya.

Ini termasuk kerentanan Server-Side JavaScript

Injection, karena input dari pengguna langsung

dieksekusi sebagai kode.

3.1.2. Skenario Serangan dan Mitigasi yang diuji

Pada gambar 5 merupakan skenario seseorang

penyerang mengunggah file berbahaya ke server,

seperti fileBerbahaya.php, atau file lain yang telah

dimanipulasi tipe MIME-nya agar lolos validasi

permukaan. Request tersebut dikirim ke server melalui

endpoint upload (misalnya /upload).

Gambar 4. Skenario serangan UFU

middleware multer, yang dikonfigurasi secara rentan,

memproses file tanpa melakukan pemeriksaan yang

memadai terhadap nama file, isi file, maupun ekstensi.

File langsung disimpan ke dalam sistem file server.

Karena tidak ada sanitasi ataupun validasi pada file

tersebut, penyerang dapat mengakses file berbahaya

itu secara langsung dan mengeksekusinya di server.

Hal ini membuka celah Remote Code Execution

(RCE), yang memungkinkan penyerang

mengendalikan server secara ilegal.

Gambar 5. Alur Mitigasi UFU

Pada gambar 6 terdapat alur untuk mencegah serangan

file upload berbahaya; pipeline upload ditingkatkan

dengan tiga lapisan middleware. Multer tetap

digunakan untuk menangani file dari request POST

/upload, namun file disimpan secara sementara di

folder uploads/temp dengan nama acak, bukan

langsung ke lokasi final.

Middleware secureFileUpload kemudian memvalidasi

tipe file menggunakan magic number (bukan hanya

ekstensi), kemudian nama file diubah menjadi UUID

untuk mencegah eksploitasi path, dan file hanya

diproses jika lulus seluruh validasi tersebut.

Middleware generateFileToken membuat token yang

terkait dengan file. Token dibuat menggunakan cypto

dari Node.js menggunakan algoritma SHA256. Token

berlaku dalam batas yang sudah ditentukan, kemudian

token disimpan di token store bersama path file dan

waktu kadaluarsa. Setelah upload berhasil, pengguna

mendapatkan token sebagai gantinya, bukan URL

langsung ke file. Untuk mengunduh file, pengguna

harus mengirim GET /download/:token, yang

kemudian diverifikasi melalui token store, jika valid

dan belum expired, server mengirimkan file dari

sistem file. Jika tidak valid, request akan ditolak

dengan status 403 forbidden.

Gambar 6. Skenario serangan SSJI

Serangan Server-Side JavaScript Injection (SSJI)

terjadi ketika penyerang mengirimkan permintaan

GET ke endpoint /search dengan parameter berbahaya,

seperti q=require('child_process'). Web server

menerima permintaan tersebut dan meneruskannya ke

handler route /search, di mana query tersebut diproses

secara langsung menggunakan fungsi eval(query).

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

66

Penggunaan eval() di sisi server sangat berisiko karena

akan mengeksekusi string sebagai kode JavaScript,

memungkinkan penyerang untuk menyisipkan dan

menjalankan kode arbitrer. Dalam skenario ini, kode

berbahaya dijalankan di server, dan hasil dari eksekusi

tersebut dikirimkan kembali ke penyerang. Hal ini

membuka peluang besar untuk eksploitasi sistem,

pengambilalihan server, atau pencurian data sensitif.

Gambar 7. Skenario serangan Prototype Pollution

Pada gambar 8 merupakan skenario serangan

Prototype Pollution dimulai ketika penyerang

mengirimkan permintaan POST ke endpoint /update-

config dengan payload JSON berbahaya seperti {

"__proto__": { "isAdmin": true } }. Permintaan ini

diproses oleh handler /update-config, yang

menggunakan fungsi merge() untuk menggabungkan

konfigurasi. Sayangnya, fungsi ini tidak aman dan

memungkinkan properti __proto____ untuk

dimodifikasi. Akibatnya, objek global

Object.prototype tercemar dengan properti baru

isAdmin: true.

Pada fase kedua, ketika pengguna biasa mengakses

endpoint /check-admin, server membuat objek baru

seperti const obj = {} di dalam handler. Karena objek

baru ini mewarisi dari Object.prototype, maka secara

otomatis objek tersebut ikut memiliki properti

isAdmin: true, meskipun tidak pernah diset secara

eksplisit.

Akhirnya, server salah mengenali pengguna biasa

sebagai admin dan merespons dengan data palsu {

isAdmin: true }, sehingga memungkinkan terjadinya

eskalasi hak akses atau pelanggaran otorisasi.

Gambar 8. Skenario mitigasi SSJI

Untuk mencegah serangan SSJI, sistem

diimplementasikan dengan Middleware keamanan

seperti Secureapp. Ketika request masuk ke server,

Middleware PreventInjections secara otomatis

memeriksa input dari query string dan body terhadap

pola-pola berbahaya, seperti ?q=__proto__ atau string

lain yang berpotensi disalahgunakan.

Jika ditemukan pola mencurigakan, proses segera

dihentikan sebelum mencapai handler route seperti

/search, dan server mengirimkan respons dengan

status 403 Forbidden. Dengan pendekatan ini, kode

berbahaya tidak pernah dieksekusi, sehingga

melindungi aplikasi dari eksploitasi fungsi-fungsi

JavaScript seperti eval() yang rentan.

Gambar 9. Skenario serangan xss

Penyerang mengunggah file SVG berbahaya melalui

endpoint POST /upload malicious. SVG, yang di

dalamnya menyisipkan tag <script> untuk

menyuntikkan JavaScript berbahaya.

Web server kemudian memproses file tersebut

menggunakan fungsi sanitasi yang tidak aman

(insecureSanitizeSVG) yang gagal menghapus elemen-

elemen berbahaya seperti <script>. Akibatnya, file

SVG dengan konten berbahaya tetap tersimpan di

sistem file server tanpa pembersihan.

Ketika file SVG ini disajikan ke browser pengguna

(korban), browser merender konten tersebut, termasuk

menjalankan skrip yang tertanam. Hal ini

menyebabkan serangan XSS berhasil, memungkinkan

penyerang mencuri data sensitif, menyalahgunakan

sesi, atau memanipulasi tampilan halaman.

Gambar 10. Skenario Mitigasi XSS

Gambar 11 merupakan skenario mitigasi cross-site

scripting. Skenario di atas dimulai dari mencegah

serangan XSS melalui file SVG, server

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

67

mengimplementasikan fungsi pembersih yang aman,

seperti Middleware secureSanitizeSVG. Saat

penyerang mengunggah file SVG berbahaya melalui

POST /upload malicious. SVG, server memanggil

fungsi ini untuk menyaring elemen berbahaya,

termasuk tag <script>.

Fungsi sanitasi tersebut secara otomatis menghapus

skrip atau atribut yang dapat dieksploitasi, lalu

menyimpan versi bersih file SVG ke dalam sistem file.

Ketika file SVG yang telah dibersihkan disajikan ke

browser korban, browser hanya akan merender gambar

tanpa menjalankan skrip apa pun. Dengan demikian,

tampilan tetap aman dan serangan XSS berhasil

dicegah.

3.2. Analisis Pengujian Unrestricted File Upload

Pengujian UFU dilakukan dengan mensimulasikan

tiga vektor serangan utama, seperti path traversal,

mime type spoofing, dan unggahan file dengan konten

berbahaya xss melalui SVG.

Payload yang Digunakan: Sebuah file dikirim dengan

nama ../../test.txt. Tujuannya adalah untuk mencoba

menulis file di luar direktori unggahan yang telah

ditentukan. Dalam pembuatan skenario terdapat dua

respon diantaranya:

1. Response Aplikasi Rentan

Aplikasi rentan menerima file tersebut dan,

karena menggunakan file.originalname tanpa

sanitasi, ia mencoba menulis file ke path relatif

uploads/safe/../../test.txt. Bergantung pada

konfigurasi server, ini dapat mengakibatkan file

ditulis di direktori root aplikasi, yang

merupakan celah keamanan serius. Pengujian

mengkonfirmasi bahwa permintaan ini diterima

dengan status 200 OK dan nama file berbahaya

tidak diubah.

2. Response Aplikasi Aman

Aplikasi yang dilindungi oleh

securityMiddleware.js menerima unggahan file,

namun Middleware mengabaikan sepenuhnya

nama file yang dikirim klien. Sebaliknya, ia

menghasilkan nama file baru yang unik

menggunakan UUID (misalnya, a1b2c3d4-

e5f6-....ext). Permintaan berhasil dengan status

200 OK, tetapi serangan Path Traversal

sepenuhnya digagalkan.

Dengan tidak menggunakan nama file yang disediakan

klien, Middleware menghilangkan vektor serangan

Path Traversal pada akarnya. Hal ini sejalan dengan

temuan dari studi (In)Security of File Uploads in

Node.js yang menekankan bahwa validasi nama file

adalah salah satu dari tiga pilar penting keamanan

unggahan. Berikut ini cuplikan kode pengujian Jest

yang bisa dilihat pada gambar 12,

Gambar 11. Skenario pengujian mitigasi path traversal

Pengujian MIME Type Spoofing dilakukan dengan

sebuah file skrip JavaScript (fake-image.js) diunggah,

namun dengan filename diubah menjadi not-a-

script.png dan header Content-Type diatur ke

image/png.

1. Response Aplikasi Rentan

Aplikasi rentan hanya memeriksa header

Content-Type. Karena nilainya adalah

image/png (yang ada di dalam daftar putih),

unggahan diterima. File skrip berbahaya

berhasil disimpan di server dengan nama .png

2. Response Aplikasi Aman

Middleware secureFileUpload menerima file

di lokasi sementara. Kemudian, ia

menggunakan library file-type untuk

membaca beberapa byte pertama dari file

(magic numbers). Library ini

mengidentifikasi konten file sebagai

application/JavaScript, yang tidak ada dalam

daftar allowedMimeTypes. Akibatnya, file

sementara dihapus dan permintaan ditolak

dengan status 415 Unsupported Media Type.

Ini membuktikan bahwa validasi sisi server yang

berbasis pada konten file (bukan metadata yang

dikirim klien) adalah mekanisme pertahanan yang

krusial dan efektif. Mitigasi ini berhasil memblokir

serangan yang akan lolos dari filter sederhana.

Pengujian Xss dilakukan dengan sebuah file SVG yang

valid (malicious.SVG) yang berisi tag JavaScript

tersembunyi, seperti <SVG onload="alert('XSS')">.

1. Response Aplikasi Rentan

Aplikasi rentan, yang tidak memiliki

mekanisme sanitasi konten, menerima dan

menyimpan file SVG berbahaya ini apa

adanya. Jika file ini kemudian ditampilkan di

browser klien, skrip akan dieksekusi,

menyebabkan serangan Stored XSS.

2. Response Aplikasi Aman

Aplikasi aman, yang menggunakan

Middleware secureSanitizeSVG, mem-parsing

konten file SVG sebelum menyimpannya.

Middleware ini secara spesifik

mengidentifikasi dan menghapus tag <script>

serta atribut event handler seperti onload. File

yang disimpan menjadi aman dan tidak lagi

dapat mengeksekusi kode JavaScript.

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

68

Ini menunjukkan pentingnya lapisan pertahanan

ketiga, yaitu sanitasi konten. Bahkan jika tipe file

diizinkan (seperti SVG), kontennya tetap bisa

berbahaya. Mitigasi ini secara efektif menetralkan

ancaman tanpa harus menolak tipe file yang secara

fungsional dibutuhkan.

Pengujian SSJI berfokus pada kemampuan aplikasi

untuk menahan upaya injeksi kode dan manipulasi

objek. Payload yang digunakan (string 100-50)

dikirim sebagai parameter query ke endpoint/search

yang menggunakan eval()

1. Response Aplikasi Rentan

Server mengeksekusi string tersebut sebagai

kode JavaScript dan mengembalikan

hasilnya, yaitu 50. Ini mengkonfirmasi bahwa

server rentan terhadap eksekusi kode arbitrer.

2. Response Aplikasi Aman

Middleware PreventInjections memeriksa

semua input yang masuk. Regex

(\beval\b|Function\s*\(|...) tidak cocok karena

payload tidak mengandung kata kunci

berbahaya secara eksplisit. Namun, jika

payload diubah menjadi eval('100-50'),

Middleware akan mendeteksinya. Permintaan

yang aman (tanpa kode) diteruskan, tetapi

dieksekusi oleh route handler yang aman

yang hanya memperlakukan input sebagai

string, sehingga mengembalikan "Hasil

pencarian untuk: 100-50"

Meskipun Middleware berbasis pola Regex efektif

untuk memblokir kata kunci yang jelas-jelas

berbahaya, mitigasi terbaik tetaplah dengan tidak

menggunakan eval() di route handler. Middleware

berfungsi sebagai jaring pengaman, tetapi praktik

pengkodean yang aman adalah pertahanan utamanya.

Pengujian Prototype Pollution dengan menggunakan

sebuah objek JSON yang berisi kunci __proto__

seperti { “__proto__”:{“isAdmin”:true}}, dikirim

melalui request body ke endpoint/update-config

1. Response Aplikasi Rentan

Aplikasi rentan, yang menggunakan fungsi

merge objek yang tidak aman, tanpa sadar

memodifikasi Object.prototype global.

Pengujian ini diverifikasi dengan melakukan

request kedua ke endpoint lain (/check-

admin) yang menunjukkan bahwa semua

objek baru sekarang memiliki properti

isAdmin: true.

2. Response Aplikasi Aman

Middleware PreventInjections secara rekursif

memindai objek input untuk mencari kunci

berbahaya (__proto__, constructor,

prototype). Ketika __proto__ ditemukan,

permintaan segera diblokir dengan status 403

Forbidden sebelum dapat mencapai logika

aplikasi.

Ini menunjukkan efektivitas pendekatan proaktif

dalam memfilter input. Dengan memblokir pola yang

diketahui berbahaya di tingkat Middleware, seluruh

aplikasi terlindungi dari kerentanan Prototype

Pollution yang mungkin ada di berbagai fungsi atau

library yang digunakannya. Berikut ini cuplikan kode

pengujian yang bisa dilihat pada Gambar 13.

Gambar 12. Skenario pengujian mitigasi Prototype Pollution

3.3. Hasil

Pada tahap ini, dilakukan pengujian untuk

mengevaluasi efektivitas dan efisiensi model mitigasi

yang diusulkan. Pengujian dibagi menjadi dua bagian

utama: uji keamanan fungsional untuk memvalidasi

kemampuan mitigasi dalam memblokir serangan, dan

uji kinerja untuk mengukur overhead yang

ditimbulkan. Pengujian keamanan fungsional yang

dilakukan menggunakan Jest menunjukkan bahwa

aplikasi yang diamankan dengan Middleware yang

diusulkan berhasil memblokir 100% dari 33 skenario

serangan yang diujikan. Tabel 1 merangkum

perbandingan hasil antara aplikasi rentan dan aplikasi

aman yang bisa dilihat hasil code coverage-nya pada

Table 1.

Tabel 1. Hasil code coverage

File %statements %Branch % Functions %

Lines

Security

Middleware.js

100% 93.33% 100% 100%

secureApp.js 88.00% 70.00% 80.00% 88%

vulnerableApp.js 91.17% 71.42% 85.71% 91.17

%

Rata-rata Proyek 93.85% 80.85% 88.88% 93.80

%

Hasil pada tabel 1 menunjukkan bahwa

securityMiddleware.js, yang merupakan file inti dari

implementasi model mitigasi, mencapai cakupan kode

yang sangat tinggi. Dengan cakupan Statements,

Functions, dan Lines yang mencapai 100%, ini

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

69

menandakan bahwa setiap baris kode dan setiap fungsi

di dalam Middleware keamanan telah dieksekusi

sedikitnya satu kali oleh skenario pengujian. Skenario

uji bisa dilihat pada table 2.

Tabel 2. Skenario Uji

Kategori

Kerentanan

Jumlah

Skenario

Deskripsi

singkat

Hasil

Mitigasi

Unrestricted File

Upload
10 Path traversal 100%

Blocked

Server-Side

Javascript Injection

8 Injeksi eval() 100%

Blocked

Cross-Site Scripting 5 File SVG dengan

tag <script>

100%

Blocked

Prototype Pollution 10 Manipulasi Json 100%

Blocked

Hasil pengujian fungsional menunjukkan tingkat

keberhasilan 100% pada seluruh 33 skenario uji.

Analisis mendalam terhadap hasil ini mengungkap

bahwa efektivitas model terletak pada arsitektur

validasi hibrida yang diterapkan. Pada kasus

Unrestricted File Upload (UFU), keberhasilan

mitigasi didorong oleh pemisahan antara metadata

yang dikirim klien (ekstensi/MIME type) dengan

properti fisik file sebenarnya. Penggunaan magic

numbers terbukti mampu mendeteksi pemalsuan tipe

file yang lolos dari validasi standar Multer. Lebih

lanjut, strategi penggantian nama file menjadi UUID

secara efektif memutus rantai serangan Path Traversal

dengan menghilangkan referensi ke direktori sistem.

Hasil pengujian ini sejalan dengan temuan [14], yang

menyatakan bahwa ketergantungan pada validasi

ekstensi file saja tidak memadai untuk mencegah

serangan Unrestricted File Upload (UFU). Penelitian

ini membuktikan bahwa validasi konten (magic

numbers) yang diterapkan pada middleware berhasil

memitigasi risiko yang terlewatkan oleh library. Selain

itu, efektivitas pemblokiran fungsi eval() dan pola

berbahaya lainnya mendukung penelitian [12].

Mengenai bahaya eksekusi kode dinamis pada Server-

Side Javascript Injection. Pendekatan hybrid yang

diusulkan dalam penelitian ini mengisi celah

keamanan yang disebutkan oleh [13]. Terkait

Prototype Pollution dengan memblokir akses ke

property __proto__ sebelum mencapai logika aplikasi.

3.4. Hasil Uji Performance

Untuk mengevaluasi dampak performa dari penerapan

middleware mitigasi terhadap fitur file upload,

dilakukan pengujian beban menggunakan skenario

simultan sebanyak 500 dan 1000 threads [20].

Pengujian ini membandingkan performa sistem dengan

dan tanpa middleware pada tiga metrik utama: connect

time, elapsed time, dan latency, yang seluruhnya

diukur dalam satuan milidetik (ms).

Ringkasan hasil perbandingan performa antara sistem

rentan (sebelum mitigasi) dan sistem aman (sesudah

mitigasi dapat dilihat pada table 3 berikut :

Tabel 3. Perbandingan Performa Sebelum dan Sesudah Mitigasi

Metrik Beban Tanpa

Middleware

Dengan

Middleware

Overhead

Connect

Time
500

1000

1.31ms

0.67ms

0.64ms

1.06ms

-0.67ms

+0.39ms

Elapsed

Time
500

1000

4.72ms

2.35ms

4.99ms

6.89ms

+4.54ms

+0.29ms

Latency 500

1000

4.69ms

2.34ms

4.98ms

6.87ms

+0.29

+4.53

Gambar 13. Perbandingan Connect Time

Gambar 14. Perbandingan elapsed time

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

70

Gambar 14 menunjukkan perbandingan waktu koneksi

awal antar klien dan server. Sistem tanpa Middleware

menunjukkan hasil waktu koneksi lebih cepat secara

konsisten, terutama pada skenario 1000 threads

dengan waktu rata-rata 0.67 ms dibandingkan dengan

1.06 ms saat menggunakan Middleware. Pada skenario

500 threads, waktu koneksi sistem tanpa Middleware

adalah 1.31 ms, sedikit lebih tinggi dibandingkan

Middleware (0.64 ms), menunjukkan inkonsistensi

kecil yang masih dalam batas wajar.

Gambar 15 memperlihatkan hasil waktu total

permintaan dari awal hingga akhir (elapsed time).

Middleware menambah beban proses yang cukup

signifikan pada skenario 1000 threads, yaitu 6.89 ms,

dibandingkan hanya 2.35 ms tanpa Middleware. Hal

serupa terjadi pada 500 threads, dengan Middleware

memakan waktu 4.99 ms, sedangkan tanpa

Middleware hanya 4.72 ms. Hasil ini menunjukkan

bahwa walaupun Middleware menambah sedikit waktu

eksekusi, skalanya masih dalam batas yang dapat

diterima untuk aplikasi berskala sedang.

Gambar 15. Perbandingan latency

Metrik latency yang ditampilkan pada Gambar 16

mengukur waktu tunda antara permintaan dan respons

server. Pada pengujian 1000 threads, latency dengan

Middleware tercatat sebesar 6.87 ms, lebih tinggi dari

tanpa Middleware sebesar 2.34 ms. Pada skenario 500

threads, Middleware menghasilkan latency 4.98 ms

dibandingkan 4.69 ms tanpa Middleware. Lonjakan

latency ini sebanding dengan beban kerja tambahan

dari proses validasi dan sanitasi berlapis pada

Middleware.

Peningkatan latensi ini disebabkan oleh proses validasi

tambahan di sisi server yang dilakukan oleh

Middleware, seperti pembacaan konten file untuk

verifikasi magic number dan proses sanitasi. Metrik

connect time tidak menunjukkan perbedaan yang

signifikan, yang mengindikasikan bahwa overhead

terjadi pada level pemrosesan aplikasi, bukan pada

level koneksi jaringan. Meskipun terjadi penurunan

kinerja, overhead ini bersifat konsisten dan tidak

menyebabkan kegagalan sistem (error rate tetap 0%)

di bawah beban. Hal ini menunjukkan bahwa

Middleware dapat diimplementasikan dalam aplikasi

nyata, dengan trade-off yang dapat diterima antara

sedikit penurunan performa dan peningkatan

keamanan yang sangat signifikan.

4. Kesimpulan

Penelitian ini menyimpulkan bahwa kerentanan

Server-Side JavaScript Injection (SSJI) dan

Unrestricted File Upload (UFU) merupakan

konsekuensi langsung dari karakteristik dasar bahasa

JavaScript dan ketergantungan tinggi terhadap pustaka

eksternal dalam ekosistem Node.js. Fitur seperti

eksekusi kode dinamis dan manipulasi prototipe

menjadi vektor utama serangan, sementara minimnya

validasi bawaan dalam modul upload file membuka

peluang eksploitasi terhadap jalur file, konten, dan

kontrol akses.

Sebagai respons terhadap permasalahan tersebut, telah

berhasil dirancang dan diimplementasikan sebuah

model mitigasi berlapis dalam bentuk Middleware

modular untuk Express.js. Model ini menggabungkan

pencegahan injeksi berbasis pola, validasi unggahan

berbasis konten dan struktur nama file, serta otorisasi

akses file berbasis time-bound token. Pendekatan ini

menyatukan metode reaktif dan proaktif untuk

mencapai perlindungan yang komprehensif terhadap

berbagai kelas serangan yang relevan dalam konteks

aplikasi Node.js.

Evaluasi empiris menunjukkan bahwa model mitigasi

ini mampu memblokir seluruh skenario serangan yang

diuji, serta mencakup jalur logika secara penuh dalam

pengujian dengan cakupan kode 100%. Validasi

berlapis terbukti efektif dalam mencegah manipulasi

jalur (path traversal), spoofing MIME type, injeksi

XSS berbasis SVG, serta serangan SSJI dan Prototype

Pollution. Temuan ini mengonfirmasi bahwa arsitektur

mitigasi yang dirancang mampu secara signifikan

meningkatkan ketahanan aplikasi terhadap kerentanan

kritis yang umum ditemukan dalam pengembangan

JavaScript sisi server. Temuan ini mengonfirmasi

bahwa arsitektur mitigasi yang dirancang mampu

secara signifikan meningkatkan ketahanan aplikasi

terhadap kerentanan kritis yang umum ditemukan

dalam pengembangan JavaScript sisi server.

Penelitian selanjutnya disarankan untuk:

1. Menguji efektivitas middleware pada arsitektur

microservices dan lingkungan cloud serverless

untuk melihat dampak latensi jaringan yang

lebih nyata.

2. Mengembangkan mekanisme deteksi berbasis

Machine Learning untuk mengenali pola injeksi

yang lebih kompleks yang mungkin lolos dari

filter berbasis Regex.

Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

 Copyright © 2026 | Hasbullah et al. | Licensee Universitas Islam Indonesia

71

Melakukan analisis keamanan terhadap vektor

serangan Regular Expression Denial of Service

(ReDoS) mengingat penggunaan Regex yang intensif

pada middleware ini.

Reference

[1] H. Hong, S. Woo, and S. Park, “CIRCUIT: A JavaScript
Memory Heap-Based Approach for Precisely Detecting

Cryptojacking Websites,” IEEE Access, vol. 10, no.

September, pp. 95356–95368, 2022, doi:
10.1109/ACCESS.2022.3204814.

[2] T. Brito et al., “Study of JavaScript Static Analysis Tools for

Vulnerability Detection in Node.js Packages,” IEEE Trans.
Reliab., vol. 72, no. 4, pp. 1324–1339, 2023, doi:

10.1109/TR.2023.3286301.

[3] S. An, A. Leung, J. B. Hong, T. Eom, and J. S. Park, “Toward
Automated Security Analysis and Enforcement for Cloud

Computing Using Graphical Models for Security,” IEEE

Access, vol. 10, no. June, pp. 75117–75134, 2022, doi:
10.1109/ACCESS.2022.3190545.

[4] S. Fugkeaw and S. Rattagool, “FPRESSO: Fast and Privacy-

Preserving SSO Authentication With Dynamic Load
Balancing for Multi-Cloud-Based Web Applications,” IEEE

Access, vol. 12, no. September, pp. 157888–157900, 2024,

doi: 10.1109/ACCESS.2024.3485996.
[5] Y. Chen et al., “Understanding the Security Risks of Websites

Using Cloud Storage for Direct User File Uploads,” IEEE
Transactions on Information Forensics and Security, vol. 20,

pp. 2677–2692, 2025, doi: 10.1109/TIFS.2025.3544082.

[6] M. Alfadel, N. A. Nagy, D. E. Costa, R. Abdalkareem, and E.
Shihab, “Empirical analysis of security-related code reviews

in npm packages,” Journal of Systems and Software, vol. 203,

p. 111752, 2023, doi: 10.1016/j.jss.2023.111752.
[7] S. Calzavara, S. Casarin, and R. Focardi, “Dynamic Security

Analysis of JavaScript: Are We There Yet?,” WWW 2025 -

Proceedings of the ACM Web Conference, pp. 1105–1115,
2025, doi: 10.1145/3696410.3714614.

[8] M. Kang et al., “Scaling JavaScript Abstract Interpretation to

Detect and Exploit Node.js Taint-style Vulnerability,” Proc.
IEEE Symp. Secur. Priv., vol. 2023-May, pp. 1059–1076,

2023, doi: 10.1109/SP46215.2023.10179352.

[9] L. Yan, G. Zhao, X. Li, and P. Sun, “Secure software
development: leveraging application call graphs to detect

security vulnerabilities,” PeerJ Comput. Sci., vol. 11, pp. 1–

26, 2025, doi: 10.7717/PEERJ-CS.2641.

[10] M. B. I. N. Muzammil, M. Bilal, S. Ajmal, S. C. Shongwe,

and Y. Y. Ghadi, “Unveiling Vulnerabilities of Web Attacks

Considering Man in the Middle Attack and Session
Hijacking,” IEEE Access, vol. 12, no. January, pp. 6365–

6375, 2024, doi: 10.1109/ACCESS.2024.3350444.

[11] M. F. Rozi and T. A. O. Ban, “Detecting Malicious JavaScript
Using Structure-Based Analysis of Graph Representation,”

IEEE Access, vol. 11, no. September, pp. 102727–102745,

2023, doi: 10.1109/ACCESS.2023.3317266.
[12] C. Ntantogian, P. Bountakas, D. Antonaropoulos, C. Patsakis,

and C. Xenakis, “NodeXP: NOde.js server-side JavaScript

injection vulnerability DEtection and eXPloitation,” Journal
of Information Security and Applications, vol. 58, no.

January, p. 102752, 2021, doi: 10.1016/j.jisa.2021.102752.

[13] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js
prototype pollution vulnerabilities via object lookup

analysis,” ESEC/FSE 2021 - Proceedings of the 29th ACM

Joint Meeting European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,

pp. 268–279, 2021, doi: 10.1145/3468264.3468542.

[14] H. Oz, A. Acar, A. Aris, A. Kharraz, and S. Uluagac, “(In)
Security of File Uploads in Node.js,” pp. 1573–1584, doi:

10.1145/3589334.3645342.

[15] A. Sajadi, B. Le, A. Nguyen, K. Damevski, and P. Chatterjee,
“Do LLMs consider security? an empirical study on responses

to programming questions,” vol. 123, pp. 1–29, 2025, doi:

10.1007/s10664-025-10658-6.
[16] K. Iwamura, A. Akmal, and A. Mohd, “Secure User

Authentication With Information Theoretic Security Using

Secret Sharing-Based Secure Computation,” IEEE Access,
vol. 13, no. January, pp. 9015–9031, 2025, doi:

10.1109/ACCESS.2025.3526632.

[17] M. Ferreira, I. I. S. Técnico, and U. De Lisboa, “Efficient
Static Vulnerability Analysis for JavaScript with Multiversion

Dependency Graphs,” vol. 8, no. June, 2024, doi:

10.1145/3656394.
[18] S. A. Ebad, “Exploring How to Apply Secure Software

Design Principles,” IEEE Access, vol. 10, no. September, pp.

128983–128993, 2022, doi: 10.1109/ACCESS.2022.3227434.
[19] R. A. Khan, “Evaluating Performance of Web Application

Security Through a Fuzzy Based Hybrid Multi-Criteria

Decision-Making Approach: Design Tactics Perspective,”
vol. 8, 2020.

[20] A. N. Syauqi and N. Q. Nada, “Analisis Kinerja Website

Informatika UPGRIS melalui Pengujian Performa
Menggunakan JMeter,” in Prosiding Seminar Nasional

Informatika, 2023, pp. 965–971.

