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Abstract

Banana leaf diseases significantly reduce crop productivity, yet automated detection systems based on deep learning often
rely on limited datasets, where training stability and generalization become critical challenges. Although Convolutional
Neural Networks (CNNs) have been widely applied for plant disease classification, systematic comparisons of optimization
algorithms under small dataset conditions remain limited, particularly for banana leaf disease identification. This study
addresses this gap by comparing the performance of Adaptive Moment Estimation (Adam) and Stochastic Gradient Descent
(SGD) optimizers within a transfer learning—based CNN framework. Six pre-trained architectures VGG16, VGGIY,
ResNet50, DenseNet121, MobileNet, and NASNetMobile were evaluated using 1,652 annotated banana leaf images classified
into Sigatoka, Cordana, Pestalotiopsis, and healthy leaves. Both optimizers were trained under identical experimental
settings to ensure a fair comparison. Experimental results show that VGG19 achieved the highest accuracy, reaching 85%
with Adam and 83% with SGD, while lightweight architecture exhibited lower performance due to underfitting. The findings
demonstrate that optimizer selection plays a crucial role in improving CNN performance for banana leaf disease
classification, especially when data availability is limited.
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1. Introduction CNN architectures or specific disease types, limiting
their generalizability. Comparative evaluations of
optimization methods such as Stochastic Gradient
Descent (SGD) and Adaptive Moment Estimation
(Adam) for banana leaf disease classification remain
scarce [13]-[15].

Bananas (Musa spp.) are among the world’s most
important horticultural crops, cultivated in more than
130 countries and contributing significantly to global
fruit production. Indonesia plays a major role in
banana cultivation, both economically and in terms of
food security [1]-[4]. However, banana production is To address this gap, this study conducts a controlled
highly vulnerable to fungal leaf diseases, which can comparative evaluation of Adam and SGD optimizers
reduce photosynthetic capacity and cause yield losses applied to six CNN architectures within a transfer
of up to 50%. Major fungal diseases affecting banana learning framework. The objective is to analyze how
leaves include Sigatoka, particularly Black Sigatoka optimizer  selection  influences classification
caused by Mycosphaerella fijiensis, Cordana leaf spot performance and convergence behavior in banana leaf
caused by Cordana musae, and Pestalotiopsis leaf disease detection. The contributions of this work
blight [24]-[27]. These diseases are characterized by include providing empirical evidence on optimizer
expanding dark lesions that merge and lead to leaf effectiveness across different CNN architectures and
necrosis and defoliation, especially under warm and offering practical guidance for automated banana
humid conditions. Limited farmer awareness and disease monitoring systems.

delayed detection further exacerbate productivity

losses in banana cultivation. Recent studies have 2. Research Methods

demonstrated the effectiveness of computer vision and
deep learning techniques, particularly Convolutional
Neural Networks (CNNs), for automated plant disease
detection [6],[8]. Transfer learning has further
improved banana leaf disease classification
performance under limited data conditions [11], [12].
Nevertheless, most existing works focus on single

In recent years, SGD has been regarded as an effective
deep-learning optimization method [18], an additional
optimization method called Adaptive Moment
Estimation (Adam), which is believed to improve the
performance of SGD in many tasks [16],[17]. This
study compares the performance of two optimization
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methods—Stochastic Gradient Descent (SGD) and
Adaptive Moment Estimation (Adam)—in classifying
banana leaf diseases using Convolutional Neural
Networks (CNNs). Figure 1 presents the overall
workflow of the proposed approach, which consists of
four main steps: (i) dataset preparation and
preprocessing, (ii) model selection, (iii) training with
SGD and Adam optimizers, and (iv) performance
evaluation and analysis. The figure emphasizing that
data augmentation is applied only to the training set,
followed by resizing, normalization, and model
training. This separation ensures methodological
validity and prevents data leakage between training
and evaluation phases.
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Figure 1. A workflow illustration of the suggested approach

Several CNN architectures have been presented in the
last ten years [22, 23]. Architectural patterns are
crucial to improving the performance of various
applications. From 1989 to the present, CNN's
architecture has undergone some changes. Structural
reformulation,  regularization, and  parameter
optimization are some of the changes that fall into this
category. Instead, it should be noted that the
reorganization of the processing unit and the
development of new blocks contributed to a significant
improvement in CNN performance. The use of
network depth is the latest innovation in CNN design.
Here is the most popular CNN architecture, used in
this study with input size 224x224x3.

Table 1. A synopsis of CNN architecture
Depth and
Dataset

16, 19 ImageNet 2014

Architectures Main finding Year

Visual Geometry
Group (VGG)

Increased depth,
small filter size
Based on symmetry

Residual network .
mapping that causes

107 ImageNet 2016

(ResNet50) overfitting
Dense blocks made up of
lutional 1 ;1 242
convolutiona ayers; layers CIFAR-10 and 2017
network attached to one 100. ImageNet
(DenseNet121) another K g
. Inverted residual
MobileNet structure 55 ImageNet 2018
NASNetMobile ~ LXactly threeinputs 300 1o oNet 2018
channels

Selecting the appropriate architecture for a given goal
task, then researchers should study architectural
attributes such as input size, depth, and resistance. In
the field of agriculture, suitable architecture can
function as automation. Cheap sensors have driven
farming automation. In recent days, better data
acquisition methods and better analytical algorithms

have driven the growth of this sector [2]. In a recent
study, transfer learning was used to solve the problem
of identifying musa diseases with limited data [28],
highlighting the possibility of using in-depth learning
to identify plant diseases and emphasizing the need for
larger and more diverse data [29]. For control and
management actions to be implemented, -early
detection of plant diseases is essential. One of the most
common methods to detect plant disease is by visual
detection. However, the process of visual detection
takes a lot of labor and is less accurate. One alternative
method to detect plant diseases is to carry out analysis
in a lab. This approach takes time and extensive
technical knowledge, and a laboratory that is not
available to many farmers in developing countries
[30]. In recent decades, Al has also been utilized to
diagnose illnesses in plants. [31]. However,
Convolutional Neural Networks (CNN) has helped
automatic object recognition and image classification
in recent years. Using various machine learning
techniques, musa crops and their main diseases can be
identified through aerial imaging.

2.1. Dataset

The dataset consists of 1,652 annotated images across
four classes: Sigatoka, Cordana, Pestalotiopsis, and
healthy banana leaves [6],[19],[20]. Data augmentation
techniques, including random rotations, flips, and
zooming, were applied to increase dataset diversity
and balance class distribution. Each class was
expanded to 413 images. An 80:20 split was applied to
divide the dataset into training and validation sets.
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Figure 2. Dataset directory structure
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2.2. Preprocessing.

Data preprocessing is a process aimed at preparing raw
data to be better and ready for processing. Data sets
collected from previous research have undergone a
preprocessing process that includes image size
adjustment and cropping. As a result, there are only
two folders, a training picture and a test picture. The
image cropping process cuts the non-essential part of
the image, leaving the important part to be identified,
while resizing the image is the process of processing
the image by changing the original resolution of the
picture to the desired resolution [5]. A data flow
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diagram before processing can be found in the image
below. categories: training data and validation data.
The distribution ratio is 80% training and 20%
validation. Images were cropped to remove non-
relevant background regions and resized to a fixed
resolution to ensure compatibility with CNN input
layers [7],[11]. Pixel values were normalized to
accelerate convergence during training.
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Figure 3. Flowchart data preprocessing

All experiments were conducted using a batch size of
32. For the Adam optimizer, the learning rate was set
to 0.0001, with B: = 0.9 and B> = 0.999, which are
commonly adopted values for stable convergence in
deep CNN training. For the SGD optimizer, a learning
rate of 0.01 and a momentum value of 0.9 were used to
improve gradient stability and convergence speed.

2.3. CNN Architectures.

Six CNN models were evaluated: VGG16, VGG19,
ResNet50, DenseNetl121, MobileNet, and
NasNetMobile. Each architecture was initialized with
pre-trained ImageNet weights through transfer
learning [8],[13],[15]. To ensure stable training and
prevent overfitting, partial fine-tuning was employed.
Specifically, the convolutional base layers of each pre-
trained model were frozen, while the fully connected
(classification) layers were fine-tuned during training.
This approach allows the models to retain general
visual feature representations learned from ImageNet
while adapting the high-level features to the specific
characteristics of banana leaf diseases. Fine-tuning all
layers was not performed to avoid overfitting and
excessive computational cost, which are common risks
when training deep CNNs on relatively small datasets.

2.4. Optimization Methods
SGD and Adam optimizers were applied to train each
architecture. To ensure a fair and controlled

comparison between Adam and SGD, both optimizers
were trained using the same number of epochs, set to

15 epochs for all CNN architectures. Hyperparameters
such as learning rate, batch size, and momentum/p
values were tuned based on prior studies and
preliminary experiments [17],[18]. The comparison
indicates that Adam is more suitable for deeper CNN
architectures under limited data conditions, offering
faster convergence and higher accuracy, whereas SGD
remains competitive in terms of generalization but
may require careful tuning and longer training
durations.

2.5. Evaluation Metrics

Model performance was assessed using accuracy
(ACCU), precision (PREC), recall (RECA), and F1-
score (F1-S), calculated from the confusion matrix of
test predictions [20],[21]. These metrics provide
complementary insights into the model’s behavior:

e Accuracy measures the proportion of correct
predictions.

e Precision reflects the correctness of positive
predictions.

e Recall indicates the model’s ability to identify all
relevant samples.

e Fl-score provides a harmonic balance between
precision and recall.

The formulas are expressed as follows:

M B TP + IN
CUrAY = Tp TN | FP + EN
TP
Precision = ——
TP + FP
Recall = e
ecall = TP 1 BN
2 x Precision x Recall
Fl-score =

Precision + Recall

Where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives,
respectively. All models were trained and validated
using the same data partition and evaluated on the
identical test set for fair comparison.

3. Results and Discussions

In addition to the 80:20 training—validation split, a
small independent test set consisting of 10-11 images
per class was used in the final identification stage to
observe model behavior. Identification was performed
using independent test images comprising 10 samples
from each class (Cordana, Healthy, Sigatoka, and 11
from Pestalotiopsis). Model performance was
evaluated using a confusion matrix, as shown in Figure
4 for Adam, and summarized in Figure 5 for SGD.
Across the six architectures, VGG19 consistently
demonstrated the highest classification accuracy,
achieving 85% with Adam and 83% with SGD.
VGG16 and ResNet50 also showed competitive
performance, whereas DenseNetl121, MobileNet, and

Copyright © 2026 | Mair et al. | Licensee Universitas Islam Indonesia




Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026)

NasNetMobile performed poorly, particularly with
accuracies below 50%.

These results suggest that deeper architectures such as
VGG19 are more effective in capturing relevant
features of Musa leaf diseases compared to lightweight
models like MobileNet and NasNetMobile, which may
suffer from underfitting given the relatively small
dataset [6],[13],[15],[20].

In terms of optimization methods, Adam generally
yielded higher accuracy for VGG-based and ResNet
architecture, while SGD showed comparable
performance in certain cases. This indicates that
Adam’s adaptive learning rate provides better
convergence in complex architectures, whereas SGD
remains stable in simpler models [16],[17]. Similar

findings were also reported in recent plant disease
classification tasks, where Adam outperformed SGD
in terms of generalization [18]. Compared to
MusaSqueezeNet, which achieved an accuracy of 84%
[1], the present study demonstrates that transfer
learning using VGG19 with Adam can surpass this
benchmark. This highlights the importance of
optimizer selection and architecture depth in
improving classification outcomes. From a practical
perspective, the ability of VGGI19 with Adam to
achieve reliable accuracy contributes to earlier and
more accurate detection of leaf diseases. This can
reduce yield losses and support better disease control
strategies, ultimately enhancing yield quality and
harvest efficiency in banana cultivation[19],[20].
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Figure 5. Confusion matrix results SGD

At the end of training and validation, the performance
of each CNN model optimized with Adam and SGD is
summarized below. For VGG16, Adam achieved 73%
accuracy, with the highest precision (100%) for
Cordana and Pestalotiopsis, while the best recall was
obtained for Sigatoka (100%). The Fl-score was
highest for the Healthy class (86%). Using SGD,

For VGG19, Adam obtained the best overall results,
with 85% accuracy and perfect recall (100%) for both
Healthy and Sigatoka classes, and an F1-score of 95%
in the Healthy class. In contrast, SGD achieved 80%
accuracy, with some metrics remaining equal but
slightly lower F1-scores.

Table 3. Evaluation of model effectiveness Classification (C)

accuracy improved to 83%, with precision again VGG19
reaching 100% for Cordana and Pestalotiopsis, and
recall of 100% for Sigatoka. Overall, SGD slightly VGG 19
outperformed Adam for this model. C ACCU PREC ACCU FI-S
Table 2. Evaluation ofmod\slGeéf;egtiveness Classification (C) Adam SGD Adam SGD Adam SGD Adam SGD
VGG 16 1 085 1 0,85 1 0,85 1 0,85 1
2 085 2 0,85 2 0,85 2 0,85 2
C Accu PREC RECA F1-S
3 0,85 3 0,85 3 0,85 3 0,85 3
Adam SGD Adam SGD Adam SGD Adam SGD
40,85 4 0,85 4 0,85 4 0,85 4
1 0,73 0,8 1 1 0,4 0,6 0,57 0,75
2 0,73 0,8 0,82 0,82 09 0,9 0,86 0,86
30,73 0,8 1 1 0,64 0,73 0,78 0,84 For ResNet50, Adam achieved 83% accuracy with
perfect precision for Pestalotiopsis and perfect recall
4 0,73 0,8 0,53 0,62 1 1 0,69 0,77

for Healthy and Sigatoka. Interestingly, SGD produced
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identical results across all parameters, showing no

Table 6. Evaluation of model effectiveness Classification (C)

significant differences between the two optimizers. MobileNet
MobileNet
C AcCCU PREC ACCU F1-S
Table 4. Evaluation of model effectiveness Classification (C)
ResNet50 Adam SGD Adam SGD Adam SGD Adam SGD

ResNet50 1 046 1 0,46 1 0,46 1 0,46 1
C AccuU PREC ACCU F1-S 2 046 2 046 2 046 2 046 2

Adam SGD Adam SGD Adam SGD Adam SGD 3 046 3 0,46 3 0,46 3 0,46 3
1 083 1 0.83 1 0.83 1 0,83 1 4 0,46 4 0,46 4 0,46 4 0,46 4
2 083 2 0,83 2 0,83 2 0,83 2
3 083 3 0,83 3 0,83 3 0,83 3
4 0,83 4 0,83 4 083 4 0,83 4 For NasNetMobile, performance was the lowest

For DenseNet121, Adam reached only 49% accuracy,
while SGD performed even worse at 39%. Adam
achieved the highest precision (60%) in the Cordana
class, while SGD produced its best recall (70%) in
Pestalotiopsis. ~ These  results  indicate  that
DenseNet121 is unsuitable for this dataset.

among all tested models. Adam achieved only 22%
accuracy, while SGD performed slightly better with
32%. Precision and recall values varied greatly,
showing instability and poor generalization.

Table 7. Evaluation of model effectiveness Classification (C)

NASNetMobile
Table 5. Evaluation of model effectiveness Classification (C) NASNetMobile
DenseNet121 ~
C -
DenseNet121 ACCU PREC ACCU F1-S
Adam SGD Adam SGD Adam SGD Adam SGD
C Accu PREC ACCU F1-S
1 022 1 022 1 022 1 022 1
Adam SGD Adam SGD Adam SGD Adam SGD
2 022 2 0,22 2 0,22 2 0,22 2
1 049 1 0,49 1 0,49 1 0,49 1 3022 3 022 3 0.22 022 3
2 049 2 0,49 2 0,49 2 0,49 2
4 022 4 022 4 022 4 022 4
3 049 3 0,49 3 0,49 3 0,49 3
4 049 4 049 4 049 4 049 4

For MobileNet, Adam achieved 46% accuracy, with its
highest recall (80%) for Sigatoka, while SGD obtained
37% accuracy with perfect recall (100%) for Sigatoka
but very low Fl-scores (45%). These findings suggest
that MobileNet tends to underfit the data due to its
lightweight architecture [8].

Figure 6 visualizes the comparative accuracy of all
CNN  architectures under Adam and SGD
optimization. Consistent with previous studies
[19],[20],[21] deeper architectures such as VGG19
outperform lightweight architectures, confirming the
importance of optimizer choice and model depth in
disease classification tasks. The following is a
graphical visualization based on the accuracy of CNN
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Figure 6. Evaluation of model effectiveness Classification (C)
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models using VGG16, VGGI9, ResNet50,
DenseNetl121, MobileNet, and NASNetMobile
architectures, using Adam and SGD optimization. An
explicit analysis of learning curves further supports
this statement, as lightweight models exhibited early
convergence with limited accuracy improvement,
whereas deeper architecture continued to benefit from
extended training, indicating higher representational
capacity.

4. Conclusion

This study employed a dataset of 1,652 images with an
80:20 train-test split to evaluate six CNN architectures
optimized with Adam and SGD. Among the tested
models, NasNetMobile showed the lowest
performance, with 22% precision using Adam and
32% accuracy using SGD. In contrast, VGGI19
achieved the best results, with 85% accuracy under
Adam and 83% with SGD, confirming its
effectiveness in banana leaf disease classification. This
study addressed two research questions: the impact of
optimizer selection on CNN performance for banana
leaf disease classification under limited data conditions
and the identification of the most effective CNN-—
optimizer combination. The results show that
optimizer choice significantly influences convergence
and accuracy, with VGG19 optimized using Adam
achieving the best performance, indicating that deeper
architectures benefit from adaptive optimization on
small datasets. In contrast, lightweight models such as
MobileNet and  NASNetMobile  consistently
underperformed, suggesting that limited model
capacity restricts their ability to capture fine-grained
disease features. It should be noted that the final
identification stage employed a relatively small
number of test samples (10-11 images per class),
which may limit the statistical reliability of the
reported class-wise metrics. These results should
therefore be interpreted as indicative rather than
definitive.

The future work of this study will focus on extending
the dataset to include additional banana leaf disease
categories, applying k-fold cross-validation and cross-
dataset evaluation to improve statistical robustness,
exploring different input image resolutions and
training iterations, and investigating deployment-
oriented optimizations for real-world agricultural
monitoring systems.
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