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Abstract  

Banana leaf diseases significantly reduce crop productivity, yet automated detection systems based on deep learning often 

rely on limited datasets, where training stability and generalization become critical challenges. Although Convolutional 

Neural Networks (CNNs) have been widely applied for plant disease classification, systematic comparisons of optimization 

algorithms under small dataset conditions remain limited, particularly for banana leaf disease identification. This study 

addresses this gap by comparing the performance of Adaptive Moment Estimation (Adam) and Stochastic Gradient Descent 

(SGD) optimizers within a transfer learning–based CNN framework. Six pre-trained architectures VGG16, VGG19, 

ResNet50, DenseNet121, MobileNet, and NASNetMobile were evaluated using 1,652 annotated banana leaf images classified 

into Sigatoka, Cordana, Pestalotiopsis, and healthy leaves. Both optimizers were trained under identical experimental 

settings to ensure a fair comparison. Experimental results show that VGG19 achieved the highest accuracy, reaching 85% 

with Adam and 83% with SGD, while lightweight architecture exhibited lower performance due to underfitting. The findings 

demonstrate that optimizer selection plays a crucial role in improving CNN performance for banana leaf disease 

classification, especially when data availability is limited. 
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1. Introduction  

Bananas (Musa spp.) are among the world’s most 

important horticultural crops, cultivated in more than 

130 countries and contributing significantly to global 

fruit production. Indonesia plays a major role in 

banana cultivation, both economically and in terms of 

food security [1]-[4]. However, banana production is 

highly vulnerable to fungal leaf diseases, which can 

reduce photosynthetic capacity and cause yield losses 

of up to 50%. Major fungal diseases affecting banana 

leaves include Sigatoka, particularly Black Sigatoka 

caused by Mycosphaerella fijiensis, Cordana leaf spot 

caused by Cordana musae, and Pestalotiopsis leaf 

blight [24]-[27]. These diseases are characterized by 

expanding dark lesions that merge and lead to leaf 

necrosis and defoliation, especially under warm and 

humid conditions. Limited farmer awareness and 

delayed detection further exacerbate productivity 

losses in banana cultivation. Recent studies have 

demonstrated the effectiveness of computer vision and 

deep learning techniques, particularly Convolutional 

Neural Networks (CNNs), for automated plant disease 

detection [6],[8]. Transfer learning has further 

improved banana leaf disease classification 

performance under limited data conditions [11], [12]. 

Nevertheless, most existing works focus on single 

CNN architectures or specific disease types, limiting 

their generalizability. Comparative evaluations of 

optimization methods such as Stochastic Gradient 

Descent (SGD) and Adaptive Moment Estimation 

(Adam) for banana leaf disease classification remain 

scarce [13]-[15]. 

To address this gap, this study conducts a controlled 

comparative evaluation of Adam and SGD optimizers 

applied to six CNN architectures within a transfer 

learning framework. The objective is to analyze how 

optimizer selection influences classification 

performance and convergence behavior in banana leaf 

disease detection. The contributions of this work 

include providing empirical evidence on optimizer 

effectiveness across different CNN architectures and 

offering practical guidance for automated banana 

disease monitoring systems. 

2. Research Methods 

In recent years, SGD has been regarded as an effective 

deep-learning optimization method [18], an additional 

optimization method called Adaptive Moment 

Estimation (Adam), which is believed to improve the 

performance of SGD in many tasks [16],[17]. This 

study compares the performance of two optimization 
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methods—Stochastic Gradient Descent (SGD) and 

Adaptive Moment Estimation (Adam)—in classifying 

banana leaf diseases using Convolutional Neural 

Networks (CNNs). Figure 1 presents the overall 

workflow of the proposed approach, which consists of 

four main steps: (i) dataset preparation and 

preprocessing, (ii) model selection, (iii) training with 

SGD and Adam optimizers, and (iv) performance 

evaluation and analysis. The figure emphasizing that 

data augmentation is applied only to the training set, 

followed by resizing, normalization, and model 

training. This separation ensures methodological 

validity and prevents data leakage between training 

and evaluation phases. 

 
Figure 1. A workflow illustration of the suggested approach 

 

Several CNN architectures have been presented in the 

last ten years [22, 23]. Architectural patterns are 

crucial to improving the performance of various 

applications. From 1989 to the present, CNN's 

architecture has undergone some changes. Structural 

reformulation, regularization, and parameter 

optimization are some of the changes that fall into this 

category. Instead, it should be noted that the 

reorganization of the processing unit and the 

development of new blocks contributed to a significant 

improvement in CNN performance. The use of 

network depth is the latest innovation in CNN design. 

Here is the most popular CNN architecture, used in 

this study with input size 224x224x3. 

Table 1. A synopsis of CNN architecture 

Architectures Main finding 
Depth and 

Dataset 
Year 

Visual Geometry 
Group (VGG) 

Increased depth, 
small filter size 

16, 19 ImageNet 2014 

Residual network 

(ResNet50) 

Based on symmetry 

mapping that causes 
overfitting 

107 ImageNet 2016 

Dense 

convolutional 
network 

(DenseNet121) 

blocks made up of 

layers; layers 
attached to one 

another 

242 

CIFAR-10 and 

100, ImageNet 

2017 

MobileNet 
Inverted residual 
structure 

55 ImageNet 2018 

NASNetMobile 
Exactly three inputs 

channels 
389 ImageNet 2018 

 

Selecting the appropriate architecture for a given goal 

task, then researchers should study architectural 

attributes such as input size, depth, and resistance. In 

the field of agriculture, suitable architecture can 

function as automation. Cheap sensors have driven 

farming automation. In recent days, better data 

acquisition methods and better analytical algorithms 

have driven the growth of this sector [2]. In a recent 

study, transfer learning was used to solve the problem 

of identifying musa diseases with limited data [28], 

highlighting the possibility of using in-depth learning 

to identify plant diseases and emphasizing the need for 

larger and more diverse data [29]. For control and 

management actions to be implemented, early 

detection of plant diseases is essential. One of the most 

common methods to detect plant disease is by visual 

detection. However, the process of visual detection 

takes a lot of labor and is less accurate. One alternative 

method to detect plant diseases is to carry out analysis 

in a lab. This approach takes time and extensive 

technical knowledge, and a laboratory that is not 

available to many farmers in developing countries 

[30]. In recent decades, AI has also been utilized to 

diagnose illnesses in plants. [31]. However, 

Convolutional Neural Networks (CNN) has helped 

automatic object recognition and image classification 

in recent years. Using various machine learning 

techniques, musa crops and their main diseases can be 

identified through aerial imaging. 

2.1. Dataset 

The dataset consists of 1,652 annotated images across 

four classes: Sigatoka, Cordana, Pestalotiopsis, and 

healthy banana leaves [6],[19],[20]. Data augmentation 

techniques, including random rotations, flips, and 

zooming, were applied to increase dataset diversity 

and balance class distribution. Each class was 

expanded to 413 images. An 80:20 split was applied to 

divide the dataset into training and validation sets. 

Figure 2. Dataset directory structure 

 

2.2. Preprocessing.  

Data preprocessing is a process aimed at preparing raw 

data to be better and ready for processing. Data sets 

collected from previous research have undergone a 

preprocessing process that includes image size 

adjustment and cropping. As a result, there are only 

two folders, a training picture and a test picture. The 

image cropping process cuts the non-essential part of 

the image, leaving the important part to be identified, 

while resizing the image is the process of processing 

the image by changing the original resolution of the 

picture to the desired resolution [5]. A data flow 
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diagram before processing can be found in the image 

below. categories: training data and validation data. 

The distribution ratio is 80% training and 20% 

validation. Images were cropped to remove non-

relevant background regions and resized to a fixed 

resolution to ensure compatibility with CNN input 

layers [7],[11]. Pixel values were normalized to 

accelerate convergence during training. 

Figure 3. Flowchart data preprocessing 

All experiments were conducted using a batch size of 

32. For the Adam optimizer, the learning rate was set 

to 0.0001, with β₁ = 0.9 and β₂ = 0.999, which are 

commonly adopted values for stable convergence in 

deep CNN training. For the SGD optimizer, a learning 

rate of 0.01 and a momentum value of 0.9 were used to 

improve gradient stability and convergence speed. 

2.3. CNN Architectures.  

Six CNN models were evaluated: VGG16, VGG19, 

ResNet50, DenseNet121, MobileNet, and 

NasNetMobile. Each architecture was initialized with 

pre-trained ImageNet weights through transfer 

learning [8],[13],[15]. To ensure stable training and 

prevent overfitting, partial fine-tuning was employed. 

Specifically, the convolutional base layers of each pre-

trained model were frozen, while the fully connected 

(classification) layers were fine-tuned during training. 

This approach allows the models to retain general 

visual feature representations learned from ImageNet 

while adapting the high-level features to the specific 

characteristics of banana leaf diseases. Fine-tuning all 

layers was not performed to avoid overfitting and 

excessive computational cost, which are common risks 

when training deep CNNs on relatively small datasets. 

2.4. Optimization Methods 

SGD and Adam optimizers were applied to train each 

architecture. To ensure a fair and controlled 

comparison between Adam and SGD, both optimizers 

were trained using the same number of epochs, set to 

15 epochs for all CNN architectures. Hyperparameters 

such as learning rate, batch size, and momentum/β 

values were tuned based on prior studies and 

preliminary experiments [17],[18]. The comparison 

indicates that Adam is more suitable for deeper CNN 

architectures under limited data conditions, offering 

faster convergence and higher accuracy, whereas SGD 

remains competitive in terms of generalization but 

may require careful tuning and longer training 

durations. 

2.5. Evaluation Metrics 

Model performance was assessed using accuracy 

(ACCU), precision (PREC), recall (RECA), and F1-

score (F1-S), calculated from the confusion matrix of 

test predictions [20],[21]. These metrics provide 

complementary insights into the model’s behavior: 

• Accuracy measures the proportion of correct 

predictions.  

• Precision reflects the correctness of positive 

predictions. 

• Recall indicates the model’s ability to identify all 

relevant samples. 

• F1-score provides a harmonic balance between 

precision and recall. 

 

The formulas are expressed as follows: 

 
Where TP, TN, FP, and FN denote true positives, true 

negatives, false positives, and false negatives, 

respectively. All models were trained and validated 

using the same data partition and evaluated on the 

identical test set for fair comparison. 

3. Results and Discussions 

In addition to the 80:20 training–validation split, a 

small independent test set consisting of 10–11 images 

per class was used in the final identification stage to 

observe model behavior. Identification was performed 

using independent test images comprising 10 samples 

from each class (Cordana, Healthy, Sigatoka, and 11 

from Pestalotiopsis). Model performance was 

evaluated using a confusion matrix, as shown in Figure 

4 for Adam, and summarized in Figure 5 for SGD. 

Across the six architectures, VGG19 consistently 

demonstrated the highest classification accuracy, 

achieving 85% with Adam and 83% with SGD. 

VGG16 and ResNet50 also showed competitive 

performance, whereas DenseNet121, MobileNet, and 
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NasNetMobile performed poorly, particularly with 

accuracies below 50%. 

These results suggest that deeper architectures such as 

VGG19 are more effective in capturing relevant 

features of Musa leaf diseases compared to lightweight 

models like MobileNet and NasNetMobile, which may 

suffer from underfitting given the relatively small 

dataset [6],[13],[15],[20]. 

In terms of optimization methods, Adam generally 

yielded higher accuracy for VGG-based and ResNet 

architecture, while SGD showed comparable 

performance in certain cases. This indicates that 

Adam’s adaptive learning rate provides better 

convergence in complex architectures, whereas SGD 

remains stable in simpler models [16],[17]. Similar 

findings were also reported in recent plant disease 

classification tasks, where Adam outperformed SGD 

in terms of generalization [18]. Compared to 

MusaSqueezeNet, which achieved an accuracy of 84% 

[1], the present study demonstrates that transfer 

learning using VGG19 with Adam can surpass this 

benchmark. This highlights the importance of 

optimizer selection and architecture depth in 

improving classification outcomes. From a practical 

perspective, the ability of VGG19 with Adam to 

achieve reliable accuracy contributes to earlier and 

more accurate detection of leaf diseases. This can 

reduce yield losses and support better disease control 

strategies, ultimately enhancing yield quality and 

harvest efficiency in banana cultivation[19],[20]. 

  

VGG 16 VGG 19 

  

ResNet50 DenseNet121 

  

MobileNet NASNetMobile 

Figure 4.  Confusion matrix results Adam 
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At the end of training and validation, the performance 

of each CNN model optimized with Adam and SGD is 

summarized below. For VGG16, Adam achieved 73% 

accuracy, with the highest precision (100%) for 

Cordana and Pestalotiopsis, while the best recall was 

obtained for Sigatoka (100%). The F1-score was 

highest for the Healthy class (86%). Using SGD, 

accuracy improved to 83%, with precision again 

reaching 100% for Cordana and Pestalotiopsis, and 

recall of 100% for Sigatoka. Overall, SGD slightly 

outperformed Adam for this model.  

Table 2. Evaluation of model effectiveness Classification (C) 
VGG16 

C 

VGG 16 

ACCU PREC RECA F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,73 0,8 1 1 0,4 0,6 0,57 0,75 

2 0,73 0,8 0,82 0,82 0,9 0,9 0,86 0,86 

3 0,73 0,8 1 1 0,64 0,73 0,78 0,84 

4 0,73 0,8 0,53 0,62 1 1 0,69 0,77 

For VGG19, Adam obtained the best overall results, 

with 85% accuracy and perfect recall (100%) for both 

Healthy and Sigatoka classes, and an F1-score of 95% 

in the Healthy class. In contrast, SGD achieved 80% 

accuracy, with some metrics remaining equal but 

slightly lower F1-scores. 

Table 3. Evaluation of model effectiveness Classification (C) 

VGG19 

C 

VGG 19 

ACCU PREC ACCU F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,85 1 0,85 1 0,85 1 0,85 1 

2 0,85 2 0,85 2 0,85 2 0,85 2 

3 0,85 3 0,85 3 0,85 3 0,85 3 

4 0,85 4 0,85 4 0,85 4 0,85 4 

 

For ResNet50, Adam achieved 83% accuracy with 

perfect precision for Pestalotiopsis and perfect recall 

for Healthy and Sigatoka. Interestingly, SGD produced 

  

VGG 16 VGG 19 

  

ResNet50 DenseNet121 

  

MobileNet NASNetMobile 

Figure 5.  Confusion matrix results SGD 
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identical results across all parameters, showing no 

significant differences between the two optimizers.  

 

Table 4. Evaluation of model effectiveness Classification (C) 

ResNet50 

C 

ResNet50 

ACCU PREC ACCU F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,83 1 0,83 1 0,83 1 0,83 1 

2 0,83 2 0,83 2 0,83 2 0,83 2 

3 0,83 3 0,83 3 0,83 3 0,83 3 

4 0,83 4 0,83 4 0,83 4 0,83 4 

 

For DenseNet121, Adam reached only 49% accuracy, 

while SGD performed even worse at 39%. Adam 

achieved the highest precision (60%) in the Cordana 

class, while SGD produced its best recall (70%) in 

Pestalotiopsis. These results indicate that 

DenseNet121 is unsuitable for this dataset.  

Table 5. Evaluation of model effectiveness Classification (C) 

DenseNet121 

C 

DenseNet121 

ACCU PREC ACCU F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,49 1 0,49 1 0,49 1 0,49 1 

2 0,49 2 0,49 2 0,49 2 0,49 2 

3 0,49 3 0,49 3 0,49 3 0,49 3 

4 0,49 4 0,49 4 0,49 4 0,49 4 

 

For MobileNet, Adam achieved 46% accuracy, with its 

highest recall (80%) for Sigatoka, while SGD obtained 

37% accuracy with perfect recall (100%) for Sigatoka 

but very low F1-scores (45%). These findings suggest 

that MobileNet tends to underfit the data due to its 

lightweight architecture [8].  

Table 6. Evaluation of model effectiveness Classification (C) 

MobileNet 

C 

MobileNet 

ACCU PREC ACCU F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,46 1 0,46 1 0,46 1 0,46 1 

2 0,46 2 0,46 2 0,46 2 0,46 2 

3 0,46 3 0,46 3 0,46 3 0,46 3 

4 0,46 4 0,46 4 0,46 4 0,46 4 

 

 

For NasNetMobile, performance was the lowest 

among all tested models. Adam achieved only 22% 

accuracy, while SGD performed slightly better with 

32%. Precision and recall values varied greatly, 

showing instability and poor generalization. 

 
 

Table 7. Evaluation of model effectiveness Classification (C) 

NASNetMobile 

C 

NASNetMobile 

ACCU PREC ACCU F1-S 

Adam SGD Adam SGD Adam SGD Adam SGD 

1 0,22 1 0,22 1 0,22 1 0,22 1 

2 0,22 2 0,22 2 0,22 2 0,22 2 

3 0,22 3 0,22 3 0,22 3 0,22 3 

4 0,22 4 0,22 4 0,22 4 0,22 4 

 

Figure 6 visualizes the comparative accuracy of all 

CNN architectures under Adam and SGD 

optimization. Consistent with previous studies 

[19],[20],[21] deeper architectures such as VGG19 

outperform lightweight architectures, confirming the 

importance of optimizer choice and model depth in 

disease classification tasks. The following is a 

graphical visualization based on the accuracy of CNN 

 

Figure 6. Evaluation of model effectiveness Classification (C) 
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models using VGG16, VGG19, ResNet50, 

DenseNet121, MobileNet, and NASNetMobile 

architectures, using Adam and SGD optimization. An 

explicit analysis of learning curves further supports 

this statement, as lightweight models exhibited early 

convergence with limited accuracy improvement, 

whereas deeper architecture continued to benefit from 

extended training, indicating higher representational 

capacity. 

4. Conclusion 

This study employed a dataset of 1,652 images with an 

80:20 train-test split to evaluate six CNN architectures 

optimized with Adam and SGD. Among the tested 

models, NasNetMobile showed the lowest 

performance, with 22% precision using Adam and 

32% accuracy using SGD. In contrast, VGG19 

achieved the best results, with 85% accuracy under 

Adam and 83% with SGD, confirming its 

effectiveness in banana leaf disease classification. This 

study addressed two research questions: the impact of 

optimizer selection on CNN performance for banana 

leaf disease classification under limited data conditions 

and the identification of the most effective CNN–

optimizer combination. The results show that 

optimizer choice significantly influences convergence 

and accuracy, with VGG19 optimized using Adam 

achieving the best performance, indicating that deeper 

architectures benefit from adaptive optimization on 

small datasets. In contrast, lightweight models such as 

MobileNet and NASNetMobile consistently 

underperformed, suggesting that limited model 

capacity restricts their ability to capture fine-grained 

disease features. It should be noted that the final 

identification stage employed a relatively small 

number of test samples (10–11 images per class), 

which may limit the statistical reliability of the 

reported class-wise metrics. These results should 

therefore be interpreted as indicative rather than 

definitive. 

The future work of this study will focus on extending 

the dataset to include additional banana leaf disease 

categories, applying k-fold cross-validation and cross-

dataset evaluation to improve statistical robustness, 

exploring different input image resolutions and 

training iterations, and investigating deployment-

oriented optimizations for real-world agricultural 

monitoring systems. 
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