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Abstract  

The increase in the volume of public complaints in urban areas requires an accurate and explainable decision support 

system. This study developed an Explainable Decision Support System (xDSS) based on the Extreme Gradient Boosting 

(XGBoost) algorithm combined with the SHapley Additive Explanations (SHAP) method to predict spatial and temporal 

trends in public complaints in DKI Jakarta Province. The research data was obtained from the Satu-Data Jakarta portal and 

included multi-year complaint reports that were processed through aggregation, temporal feature engineering, and 

regression-based metric evaluation. The results show that the XGBoost model has high predictive performance with an R² 

value of 0.8425, MAE of 2.9858, and RMSE of 4.9928, indicating the model’s ability to explain more than 84% of the 

variation in the actual number of complaints. SHAP analysis revealed that temporal features such as complaint_lag1 and 

complaint_ma3 had the most dominant influence, while external variables such as rainfall (rainfall_mm) and population 

density (population_density) also made positive contributions. These results indicate that the dynamics of public complaints 

are influenced by a combination of historical factors and environmental conditions. Practically, this xDSS system can 

provide accurate predictions and transparent interpretations, thereby supporting the implementation of Smart Governance 

and evidence-based policy. This approach strengthens the application of Explainable Artificial Intelligence (XAI) in public 

service governance by providing accurate, ethical, and auditable models to support strategic decision-making in the era of 

digital government. 
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1. Introduction  

Public complaints about public services are one of the 

essential indicators for measuring the quality of 

governance and citizen satisfaction. With the volume 

of complaints continuing to grow in urban areas such 

as Jakarta, there is a need for a system that not only 

predicts complaint trends but also explains the 

contributing factors so that local governments can 

respond more proactively. Conventional predictive 

models, while accurate, are often trapped as black 

boxes and are difficult for stakeholders to accept [1], 

[2]. 

Previous studies have widely used machine learning 

methods to predict the number of complaints, but most 

do not incorporate aspects of interpretability, spatial-

temporal context, and external risk variables such as 

rainfall or population density. As a result, local 

governments often encounter predictive models that 

are difficult to use as a basis for policy due to the lack 

of clarity regarding the contribution of each factor [3]. 

On the other hand, spatial visualizations that support 

the understanding of priority areas are also still 

limited. 

The main research gap lies in the lack of decision 

support systems (DSS) that combine complaint trend 

prediction, model interpretability through SHAP, 

integration of environmental and social risk factors, 

and spatial visualization as a policy interface. Several 

studies have applied XGBoost and SHAP in the fields 

of health or finance to combine accuracy and 

interpretability [3], [4], but their full application in 

urban public complaints is still limited. In the spatial 

domain, temporal-spatial hybrid models such as 

STGNN are emerging as a new trend but have not 

been widely adopted in the context of urban services 

[5]. 

As the capital city, DKI Jakarta has a very high public 

service burden, with demographic diversity, dense 

infrastructure, and environmental challenges such as 

flooding and overcrowding. Open data portals such as 

SatuData Jakarta provide multi-year complaint 

datasets by administrative area, enabling this research 

to be conducted in a real local context. To date, there 

is no system in Indonesia that combines complaint 

trend prediction, interpretability, and spatial 

visualization in a single DSS framework [6], [7]. 
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This study aims to develop a trend prediction model 

for public complaints based on XGBoost, apply the 

SHAP method to explain the contribution of predictor 

features, integrate external risk variables such as 

rainfall and population density as additional predictor 

factors, and present a spatial visualization interface to 

support region-based policies. 

This paper aims to present an Explainable Spatio-

Temporal DSS that is not only capable of predicting 

public complaint trends with high accuracy but also 

describes the driving factors and visually maps the 

risks by region. Thus, this system is expected to 

become a transparent and responsive policy tool, as 

well as opening opportunities for replication in other 

cities in Indonesia and Southeast Asia. 

2. Related Work 

The development of Explainable Artificial Intelligence 

(XAI) in recent years has changed the paradigm of 

decision support systems from merely predictive to 

interpretable and transparent [1], [8]. The SHAP 

(SHapley Additive Explanations) method has become 

one of the most widely used approaches due to its 

ability to provide global and local explanations for 

decision tree-based models such as XGBoost [2], [9]. 

Recent studies confirm the effectiveness of the 

XGBoost-SHAP combination in explaining feature 

contributions in the health [10], [11], social [12], and 

environmental domains [13]. The integration of the 

two not only improves model accuracy but also 

strengthens the aspect of trustworthiness for 

policymakers [4]. 

Previous studies have shown that the application of 

machine learning in public complaint systems can 

accelerate classification, prioritization, and topic 

identification [14], [15]. Several studies in the public 

sector have also utilized XGBoost models to predict 

complaint volumes and determine the main 

contributing factors in city services [16], [17]. 

However, most of these models are still black-box 

models without clear interpretation mechanisms, 

making them difficult to integrate into government 

decision-making frameworks [1], [18]. This lack of 

transparency is an important reason to adopt the more 

explainable XGBoost-SHAP framework in the context 

of smart city governance. 

Predicting urban phenomena requires an approach that 

considers both spatial and temporal dimensions 

simultaneously. The Spatio-Temporal Graph Neural 

Networks (STGNN) approach has become a major 

trend for modeling inter-regional dependencies and 

temporal dynamics in urban systems [5], [19]. 

Although superior in terms of predictive power, these 

spatio-temporal deep learning models lack 

interpretability. Therefore, many studies have shifted 

to combining ensemble learning and XAI, such as 

XGBoost-SHAP for flood risk prediction [6], [20], air 

quality [21], and urban vulnerability [22]. These 

studies show that integrating environmental variables, 

rainfall, population density, and social risk improve 

prediction accuracy and policy relevance [11], [23]. 

In Indonesia, research on public complaint systems 

still focuses on text classification and descriptive 

visualization, while the use of explainable and spatio-

temporal models has not been widely developed. The 

DKI Jakarta One Data Portal provides multi-year 

complaint data that is rich in spatial and temporal 

context but has not been widely used for 

interpretability-based DSS. By combining XGBoost 

and SHAP and adding external risk variables, this 

research contributes to the development of an 

Explainable Spatio-Temporal Decision Support 

System (DSS) that can predict complaint trends and 

explain the driving factors transparently. This model 

reinforces the smart governance paradigm and 

supports the implementation of evidence-based policy 

in densely populated urban areas such as [14], [15]. 

3. Research Methods 

3.1. Research Design 

This study proposes an Explainable Spatio-Temporal 

Decision Support System (DSS) framework to predict 

trends in urban community complaints. 

 

Figure 1. Research Design 

Based on figure 1, the research architecture comprises 

four main components, namely the collection and 

preprocessing of public complaint data from open 

government data sources, the creation of spatial and 

temporal variables as predictors, the development of 

an XGBoost-based machine learning model combined 
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with SHAP for model interpretability, and the spatial 

visualization of prediction results and external risk 

factors in the form of interactive and static maps. The 

entire process is designed so that this system can be 

integrated with local government DSS dashboards and 

function as an evidence-based decision support tool 

[1], [8]. 

 

Figure 2. Model Architecture and Algorithmic flow of XGBoots and 

SHAP 

Figure 2 illustrates the internal architecture of the 

proposed explainable DSS model integrating XGBoost 

and SHAP. Input features derived from temporal, 

spatial, and environmental data are preprocessed and 

used to train a gradient boosting ensemble through 

XGBoost for both regression and trend classification 

tasks. The trained model is then interpreted using the 

SHAP TreeExplainer framework, which quantifies the 

contribution and direction of each feature to the 

predicted outputs. The SHAP values are aggregated to 

produce global feature importance and visualized 

through summary plots and spatial heatmaps, 

providing transparent insights into the underlying 

drivers of urban complaint trends. 

3.2. Dataset Description 

The main research dataset was obtained from the 

portal Satu Data DKI Jakarta, which contains multi-

year public complaint reports from various sub-

districts and villages. The data includes attributes such 

as tanggal_masuk, tanggal_selesai, jenis_pengaduan, 

regional work unit (SKPD), and completion status 

(complete, pending). The dataset includes more than 1 

million complaint entries from 2019 to 2022. To 

enrich the spatial and environmental context, this data 

is integrated with external variables, namely monthly 

rainfall (mm) from the Meteorology, Climatology and 

Geophysics Agency (BMKG) and population density 

(people/km²) from the DKI Jakarta Provincial Statistics 

Agency (BPS). Each complaint is coded based on 

administrative area (urban village/subdistrict) and then 

aggregated to a monthly time level, resulting in a 

spatial-temporal data panel. Data preprocessing is 

carried out through the stages of cleaning, date format 

normalization, missing value handling, and merging 

between sources using unique spatial keys. The final 

dataset is saved as pengaduan_agg_ready.csv for 

model training purposes. 

3.3. Feature Engineering 

The feature engineering process is carried out to 

construct predictors that represent temporal, spatial, 

and external risk dimensions. The resulting features 

include Temporal Features complaint_lag1, 

complaint_lag2, and complaint_ma3 average 

complaints in the last 3 months to capture time 

patterns. Spatial Risk Factors are hazard, vulnerability, 

coping, and inform_risk derived from the regional risk 

index (INFORM Index). External Risk Layers are 

rainfall_mm (monthly rainfall) and population_density 

(population density per region). Seasonal Encoding, 

namely sin_month and cos_month, is used to represent 

seasonal cycles in continuous numerical form cyclic 

feature encoding. All features are normalized using 

StandardScaler to stabilize the distribution and 

accelerate model convergence [21], [24]. 

3.4. Model Development 

The main modeling uses Extreme Gradient Boosting 

(XGBoost) for two purposes. First, a regression model 

to predict the number of monthly public complaints, 

and second, a classification model to determine 

whether the trend is upward, downward, or stable. The 

XGBoost model was chosen for its superiority in 

handling complex tabular data, its ability to capture 

non-linear relationships, and its training time 

efficiency. The main parameters optimized include 

learning rate (η), max_depth, subsample, and 

colsample_bytree. The training process was carried out 

using an early stopping approach for 50 iterations to 

prevent overfitting. 

For interpretability, SHAP was applied as a post-hoc 

explanation framework. SHAP values were calculated 

for each feature in each observation to identify the 

positive or negative influence of features on model 

predictions. The absolute average SHAP value was 

used to compile a feature importance ranking [3], [4]. 

Additionally, this system visualizes prediction results 

and interpretations in interactive maps based on 

Folium and GeoPandas, with an additional layer in the 

form of an external risk heatmap (rainfall and 

population density) that illustrates the socio-

environmental risk per administrative area. 

3.5. Evaluation Metrics and Visualization 

Model evaluation was performed using three main 

metrics for regression and classification. First, Mean 

Absolute Error (MAE) was used to measure the 
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average absolute error between the actual value 𝑦𝑖 and 

the predicted value 𝑦𝑖̂, providing an overview of the 

accuracy of the model's predictions without 

considering the direction of the error. The equation is 

shown in Equation (1). 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1               (1) 

 

The smaller MAE value, the higher the accuracy of the 

model's prediction against the actual data. The second 

method uses Root Mean Square Error (RMSE) to 

calculate the average square root of the difference 

between the actual value and the predicted value. 

Different from MAE, RMSE gives a greater penalty to 

errors with high deviation. The equation is written in 

Equation (2). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1       (2) 

A small RMSE value indicates that the model can 

provide stable predictions with low error variation. 

Third, use the coefficient of determination (R²) to 

assess the proportion of variation in the actual data yi 

that can be explained by the model. The equation is 

given in Equation (3). 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑁
𝑖=1

                     (3) 

where 𝑦̅ is the actual mean value. If the R2 value is 

close to 1, it indicates that the model has excellent 

predictive capabilities, while a negative value indicates 

that the model's performance is worse than the simple 

mean. For trend classification models rising or 

stable/down, evaluation is performed using the 

Accuracy, Precision, Recall, and F1-Score metrics, as 

shown in Equations (4)–(7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (4) 

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (6) 

𝐹1 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙
    (7) 

with 𝑇𝑃 (True Positive), 𝑇𝑁 (True Negative), 𝐹𝑃 

(False Positive), and 𝐹𝑁 (False Negative) each 

representing predictions and actual conditions of 

complaint trends. The evaluation process was 

conducted using k-fold cross validation (k = 5) to 

measure the stability of the model's performance 

across various data subsets, as well as reporting the 

mean and standard deviation values of the evaluation 

metrics. 

4. Results and Discussions 

4.1. Performance Analysis Model 

The XGBoost–SHAP-based Explainable DSS model 

shows stable results with high prediction performance 

on the monthly aggregation dataset of public 

complaints in DKI Jakarta. Based on the results of 

testing the model performance evaluation using three 

main metrics, namely Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Coefficient of 

Determination (R²). Testing the XGBoost model for 

the 2019–2022 period yielded an MAE value of 

2.9858, an RMSE of 4.9928, and an R² of 0.8425. The 

MAE value of ≈ 2.99 indicates that, on average, the 

absolute difference between the predicted value and 

the actual value of the number of complaints is only 

about three units per month in each region. This 

indicates that the model is capable of providing 

estimates that are very close to the actual data and that 

the prediction error is practically small. On the trend 

classification side (trend_label), the accuracy reached 

0.86, with a Precision value of 0.83, Recall of 0.84, 

and F1-Score of 0.835. 

Meanwhile, the RMSE value of 4.99 illustrates a 

slightly higher sensitivity of the model to large errors. 

The relatively small difference between RMSE and 

MAE (<2) indicates model stability, with only a few 

extreme anomalies (outliers) in the monthly complaint 

data. Thus, the model has low generalization error and 

consistent performance across different administrative 

regions. The R² value of 0.8425 indicates that 

approximately 84.25% of the variation in the actual 

number of complaints can be explained by the features 

used in the model, particularly temporal variables such 

as complaint_lag1, complaint_ma3, and external 

variables such as rainfall_mm and population_density. 

With an R² above 0.80, the model is categorized as 

having “high explanatory power” in the domain of 

urban analytics [25], [26], These results show that 

XGBoost successfully captures historical patterns and 

environmental factors that influence fluctuations in the 

number of public complaints. 

 

Figure 3. Training vs Validation Loss 
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The training curve (training vs validation loss) shows 

a steady downward trend until it converges at a certain 

epoch, with no indication of overfitting. 

Based on figure 3, that confirms the effectiveness of 

early stopping and regularization in maintaining bias–

variance balance. These results are in line with the 

findings of [4], [20], which demonstrate the superiority 

of XGBoost in capturing nonlinear relationships in 

spatiotemporal data. 

 

Figure 4. XGBoost Actual vs Predicted 

Figure 4 shows a comparison of predictions and actual 

data. Shows that the model tends to underestimate 

extreme outliers in densely populated areas such as 

Cilandak District and Palmerah Subdistrict. This 

phenomenon is common in tree ensemble models 

because the weighting of quadratic errors at extreme 

points is lower than that of the majority of data [13], 

[21]. However, the relatively low error (<10%) in most 

areas shows the overall stability of the model. 

4.2. SHAP Explainability Analysis 

The results of the SHAP value analysis provide deep 

insights into the factors that influence public complaint 

trends. 

Figure 5 show the mean absolute SHAP values, the 

three features with the highest contribution are 

complaint_lag1 and complaint_lag2 (complaints from 

the previous month), rainfall_mm (monthly rainfall), 

and population_density (population density). Positive 

SHAP values indicate an increase in the predicted 

number of complaints, while negative values decrease 

the estimate. This indicates that high rainfall 

consistently increases the probability of an increase in 

complaints, especially in the infrastructure and 

environmental hygiene categories. Conversely, areas 

with high coping capacity, such as sub-districts with 

active neighborhood coordination (RW), tend to have 

negative SHAP values, indicating good complaint 

mitigation capabilities. 

 

Figure 5. SHAP Feature Importance 

 

 

Figure 6. SHAP Summary 

 

 

Figure 7. SHAP Dependence Plot Fitur complaint_lag1 

Figure 6 shows the SHAP summary plot visualization 

heterogeneous patterns between regions, where the 

vulnerability index variable plays a dominant role in 

densely populated areas such as Cempaka Putih and 

Tanah Abang, while hazards (flooding and inundation) 

are the main factors in coastal areas such as 

Penjaringan. This interpretation is consistent with 

studies by [23], [27], which emphasize the importance 

of integrating socio-environmental factors into urban 

predictive models. Thus, SHAP not only explains 
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“what” is predicted, but also “why” a region 

experiences an increase in complaints, making this 

system transparent and easy to understand by non-

technical decision makers. 

Figure 7 shows the relationship between the 

complaint_lag1 value and its contribution (SHAP 

value) to the prediction of the number of complaints. It 

can be seen that the higher the number of complaints 

in the previous month, the greater the positive effect 

on the increase in the following month's prediction. 

This indicates a pattern of temporal autocorrelation, 

where the volume of complaints tends to continue 

consistently over time. 

4.3. Spatio-Temporal Risk Visualization 

 

Figure 8. Spatial Distribution of DSS Model Predictions 

Figure 8 illustrates the spatial distribution of the DSS 

model predictions in the DKI Jakarta area. The color 

intensity indicates the estimated number of complaints, 

with red zones indicating areas with a high potential 

for complaints. This pattern shows a concentration of 

risk in densely populated and flood-prone areas. 

 

Figure 9. Temporal Trend Prediction of Complaint Numbers 

 

Figure 10. Contribution of Features to the Prediction Number of 

Complaints 

Figure 9 shows a comparison of the temporal trends of 

actual complaints and model predictions. The 

prediction line follows seasonal fluctuation patterns 

with relatively low error, indicating the model's ability 

to capture temporal dynamics. 

Figure 10 shows the results of the SHAP value 

analysis, which indicates the most influential factors 

on the model prediction. The variables 

complaint_lag1, rainfall_mm, and population_density 

are the three main features that contribute positively to 

an increase in complaints. 

 

Figure 11. Combined Risk 

Figure 11 presents a combined risk map of rainfall and 

population density, which serves as the basis for 

identifying priority areas. This visual integration 

provides a stronger policy context and supports the 

application of DSS in urban planning. 

4.4. Discussion and Policy Implications 

The Explainable Decision Support System (xDSS) 

model based on XGBoost developed in this study 

shows excellent predictive performance with an R² 

value of 0.8425, MAE of 2.9858, and RMSE of 

4.9928. These results confirm that the model is able to 

explain most of the variation in the number of public 

complaints with relatively small errors. Compared to 

conventional methods such as linear regression or 

ARIMA, this approach results in a significant 

improvement in prediction accuracy and stability, 

while maintaining a high level of interpretability 

through the integration of the SHAP method. 

Interpretability analysis shows that the complaint_lag1 

and complaint_ma3 features contribute most to the 

prediction results, confirming the important role of 

historical temporal patterns in influencing public 

complaint behavior. In addition, contextual variables 

such as rainfall_mm and population_density also have 

a positive influence, indicating a relationship between 

environmental factors and regional density with an 

increase in the volume of complaints. The non-linear 

pattern shown in the SHAP Dependence Plot (Figure 

7) confirms that high rainfall intensity significantly 

increases the probability of a surge in public 

complaints, particularly those related to drainage and 

sanitation issues [28]. 

In terms of implementation, the xDSS model offers 

great potential for local governments, particularly the 

DKI Jakarta Provincial Government, to optimize the 

management of predictive data-based public services. 
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This system enables early identification of high-risk 

areas and periods, allowing for proactive resource 

allocation. The integration of explainable AI (XAI) 

components ensures the transparency and 

accountability of algorithmic decisions, in line with 

the principles of Good Governance and Responsible 

AI in modern governance [29]. In addition, the spatial 

mapping results from the model can be used to design 

more precise preventive policies for environmental 

conditions and population density. 

Conceptually, this research reinforces the role of 

explainable machine learning in public decision-

making. The XGBoost model combined with SHAP 

analysis not only improves prediction accuracy but 

also provides explanations that can be interpreted 

logically by policymakers. This approach supports the 

transition to Smart Governance, where public policies 

are formulated based on transparent and accountable 

predictive analytics. Thus, this xDSS system has the 

potential to become a national prototype in the ethical 

and evidence-based application of AI for managing 

public complaints in urban areas. 

5. Conclusion 

This study successfully developed an Explainable 

Decision Support System (xDSS) based on the 

XGBoost algorithm integrated with the SHAP 

(SHapley Additive Explanations) method to analyze 

and predict spatial and temporal trends in public 

complaints in DKI Jakarta Province. The evaluation 

results showed excellent model performance with an 

R² value of 0.8425, MAE of 2.9858, and RMSE of 

4.9928, proving the model's ability to explain more 

than 84% of the actual data variation with a low error 

rate. SHAP-based interpretability analysis identified 

that temporal features such as complaint_lag1 and 

complaint_ma3 are the main factors influencing 

predictions, while external variables such as rainfall 

(rainfall_mm) and population density 

(population_density) also contribute significantly. 

These findings confirm that the dynamics of public 

complaints are greatly influenced by a combination of 

historical factors and environmental conditions. 

In practical terms, the developed xDSS system not 

only provides accurate predictions but also increases 

the transparency and accountability of data-based 

decisions through feature explanations that are easily 

understood by policy makers. The integration of this 

explainable AI approach reinforces the concept of 

Smart Governance and supports adaptive, proactive, 

and evidence-based policy making. This model can be 

used as an early warning system to project spikes in 

public complaints and assist the government in 

allocating resources efficiently. In the future, model 

development can be directed towards the integration of 

deep learning-based spatial-temporal models and the 

application of the system in other cities in Indonesia to 

expand the validity and generalization of the model in 

the context of public complaint management and smart 

city management. 
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