Published online on: https://journal.uii.ac.id/jurnalsnati/ M) Check for updates
DOI: 10.20885/snati.v5.11.44562

TURNAL  Jurnal Sains, Nalar, dan Aplikasi

SNATI Teknologi Informasi

e sz asobsinons - \o] 5 No. 1 (2026) 24 - 31 ISSN Media Electronic: 2807-5935

An Explainable Spatio-Temporal Decision Support System (DSS) Using
XGBoost And SHAP For Urban Complaint Trend Prediction

Moeng Sakmar!®, Agus Darmawan?, Puteri Awaliatush Shofo®, Nurul Tiara Kadir*
!Computer Engineering, Faculty of Engineering, Universitas Jenderal Soedirman, Purwokerto, Indonesia
234Informatics, Faculty of Engineering, Universitas Jenderal Soedirman, Purwokerto, Indonesia
'moeng.sakmar@unsoed.ac.id, >agus.darmawan@unsoed.ac.id, *puteri.awaliatus@unsoed.ac.id, *nurul.tiara@unsoed.ac.id

Abstract

The increase in the volume of public complaints in urban areas requires an accurate and explainable decision support
system. This study developed an Explainable Decision Support System (xDSS) based on the Extreme Gradient Boosting
(XGBoost) algorithm combined with the SHapley Additive Explanations (SHAP) method to predict spatial and temporal
trends in public complaints in DKI Jakarta Province. The research data was obtained from the Satu-Data Jakarta portal and
included multi-year complaint reports that were processed through aggregation, temporal feature engineering, and
regression-based metric evaluation. The results show that the XGBoost model has high predictive performance with an R?
value of 0.8425, MAE of 2.9858, and RMSE of 4.9928, indicating the model’s ability to explain more than 84% of the
variation in the actual number of complaints. SHAP analysis revealed that temporal features such as complaint lagl and
complaint_ ma3 had the most dominant influence, while external variables such as rainfall (rainfall mm) and population
density (population_density) also made positive contributions. These results indicate that the dynamics of public complaints
are influenced by a combination of historical factors and environmental conditions. Practically, this xDSS system can
provide accurate predictions and transparent interpretations, thereby supporting the implementation of Smart Governance
and evidence-based policy. This approach strengthens the application of Explainable Artificial Intelligence (XAI) in public
service governance by providing accurate, ethical, and auditable models to support strategic decision-making in the era of
digital government.
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1. Introduction The main research gap lies in the lack of decision
support systems (DSS) that combine complaint trend
prediction, model interpretability through SHAP,
integration of environmental and social risk factors,
and spatial visualization as a policy interface. Several
studies have applied XGBoost and SHAP in the fields
of health or finance to combine accuracy and
interpretability [3], [4], but their full application in
urban public complaints is still limited. In the spatial
domain, temporal-spatial hybrid models such as

Public complaints about public services are one of the
essential indicators for measuring the quality of
governance and citizen satisfaction. With the volume
of complaints continuing to grow in urban areas such
as Jakarta, there is a need for a system that not only
predicts complaint trends but also explains the
contributing factors so that local governments can
respond more proactively. Conventional predictive
models, while a}ccurate, are often trapped as black STGNN are emerging as a new trend but have not
boxes and are difficult for stakeholders to accept [1], b idelv adopted in th text of urb .
een widely adopted in the context of urban services

(2]. 5],

Previous studies have widely used machine learning
methods to predict the number of complaints, but most
do not incorporate aspects of interpretability, spatial-
temporal context, and external risk variables such as
rainfall or population density. As a result, local
governments often encounter predictive models that
are difficult to use as a basis for policy due to the lack
of clarity regarding the contribution of each factor [3].
On the other hand, spatial visualizations that support
the understanding of priority areas are also still
limited.

As the capital city, DKI Jakarta has a very high public
service burden, with demographic diversity, dense
infrastructure, and environmental challenges such as
flooding and overcrowding. Open data portals such as
SatuData Jakarta provide multi-year complaint
datasets by administrative area, enabling this research
to be conducted in a real local context. To date, there
is no system in Indonesia that combines complaint
trend prediction, interpretability, and spatial
visualization in a single DSS framework [6], [7].
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This study aims to develop a trend prediction model
for public complaints based on XGBoost, apply the
SHAP method to explain the contribution of predictor
features, integrate external risk variables such as
rainfall and population density as additional predictor
factors, and present a spatial visualization interface to
support region-based policies.

This paper aims to present an Explainable Spatio-
Temporal DSS that is not only capable of predicting
public complaint trends with high accuracy but also
describes the driving factors and visually maps the
risks by region. Thus, this system is expected to
become a transparent and responsive policy tool, as
well as opening opportunities for replication in other
cities in Indonesia and Southeast Asia.

2. Related Work

The development of Explainable Artificial Intelligence
(XAI) in recent years has changed the paradigm of
decision support systems from merely predictive to
interpretable and transparent [1], [8]. The SHAP
(SHapley Additive Explanations) method has become
one of the most widely used approaches due to its
ability to provide global and local explanations for
decision tree-based models such as XGBoost [2], [9].
Recent studies confirm the effectiveness of the
XGBoost-SHAP combination in explaining feature
contributions in the health [10], [11], social [12], and
environmental domains [13]. The integration of the
two not only improves model accuracy but also
strengthens the aspect of trustworthiness for
policymakers [4].

Previous studies have shown that the application of
machine learning in public complaint systems can
accelerate classification, prioritization, and topic
identification [14], [15]. Several studies in the public
sector have also utilized XGBoost models to predict
complaint volumes and determine the main
contributing factors in city services [16], [17].
However, most of these models are still black-box
models without clear interpretation mechanisms,
making them difficult to integrate into government
decision-making frameworks [1], [18]. This lack of
transparency is an important reason to adopt the more
explainable XGBoost-SHAP framework in the context
of smart city governance.

Predicting urban phenomena requires an approach that
considers both spatial and temporal dimensions
simultaneously. The Spatio-Temporal Graph Neural
Networks (STGNN) approach has become a major
trend for modeling inter-regional dependencies and
temporal dynamics in wurban systems [5], [19].
Although superior in terms of predictive power, these
spatio-temporal ~ deep learning models lack
interpretability. Therefore, many studies have shifted
to combining ensemble learning and XAI, such as
XGBoost-SHAP for flood risk prediction [6], [20], air
quality [21], and urban vulnerability [22]. These

studies show that integrating environmental variables,
rainfall, population density, and social risk improve
prediction accuracy and policy relevance [11], [23].

In Indonesia, research on public complaint systems
still focuses on text classification and descriptive
visualization, while the use of explainable and spatio-
temporal models has not been widely developed. The
DKI Jakarta One Data Portal provides multi-year
complaint data that is rich in spatial and temporal
context but has not been widely wused for
interpretability-based DSS. By combining XGBoost
and SHAP and adding external risk variables, this
research contributes to the development of an
Explainable  Spatio-Temporal Decision  Support
System (DSS) that can predict complaint trends and
explain the driving factors transparently. This model
reinforces the smart governance paradigm and
supports the implementation of evidence-based policy
in densely populated urban areas such as [14], [15].

3. Research Methods

3.1. Research Design

This study proposes an Explainable Spatio-Temporal
Decision Support System (DSS) framework to predict
trends in urban community complaints.

OPEN DATAACQUISITION
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Figure 1. Research Design

Based on figure 1, the research architecture comprises
four main components, namely the collection and
preprocessing of public complaint data from open
government data sources, the creation of spatial and
temporal variables as predictors, the development of
an XGBoost-based machine learning model combined
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with SHAP for model interpretability, and the spatial
visualization of prediction results and external risk
factors in the form of interactive and static maps. The
entire process is designed so that this system can be
integrated with local government DSS dashboards and
function as an evidence-based decision support tool

(11, [8].
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Figure 2. Model Architecture and Algorithmic flow of XGBoots and
SHAP

Figure 2 illustrates the internal architecture of the
proposed explainable DSS model integrating XGBoost
and SHAP. Input features derived from temporal,
spatial, and environmental data are preprocessed and
used to train a gradient boosting ensemble through
XGBoost for both regression and trend classification
tasks. The trained model is then interpreted using the
SHAP TreeExplainer framework, which quantifies the
contribution and direction of each feature to the
predicted outputs. The SHAP values are aggregated to
produce global feature importance and visualized
through summary plots and spatial heatmaps,
providing transparent insights into the underlying
drivers of urban complaint trends.

3.2. Dataset Description

The main research dataset was obtained from the
portal Satu Data DKI Jakarta, which contains multi-
year public complaint reports from various sub-
districts and villages. The data includes attributes such
as tanggal masuk, tanggal selesai, jenis pengaduan,
regional work unit (SKPD), and completion status
(complete, pending). The dataset includes more than 1
million complaint entries from 2019 to 2022. To
enrich the spatial and environmental context, this data
is integrated with external variables, namely monthly
rainfall (mm) from the Meteorology, Climatology and
Geophysics Agency (BMKG) and population density
(people/km?) from the DKI Jakarta Provincial Statistics

Agency (BPS). Each complaint is coded based on
administrative area (urban village/subdistrict) and then
aggregated to a monthly time level, resulting in a
spatial-temporal data panel. Data preprocessing is
carried out through the stages of cleaning, date format
normalization, missing value handling, and merging
between sources using unique spatial keys. The final
dataset is saved as pengaduan agg ready.csv for
model training purposes.

3.3. Feature Engineering

The feature engineering process is carried out to
construct predictors that represent temporal, spatial,
and external risk dimensions. The resulting features
include Temporal  Features complaint lagl,
complaint lag2, and  complaint ma3  average
complaints in the last 3 months to capture time
patterns. Spatial Risk Factors are hazard, vulnerability,
coping, and inform_risk derived from the regional risk
index (INFORM Index). External Risk Layers are
rainfall mm (monthly rainfall) and population density
(population density per region). Seasonal Encoding,
namely sin_month and cos_month, is used to represent
seasonal cycles in continuous numerical form cyclic
feature encoding. All features are normalized using
StandardScaler to stabilize the distribution and
accelerate model convergence [21], [24].

3.4. Model Development

The main modeling uses Extreme Gradient Boosting
(XGBoost) for two purposes. First, a regression model
to predict the number of monthly public complaints,
and second, a classification model to determine
whether the trend is upward, downward, or stable. The
XGBoost model was chosen for its superiority in
handling complex tabular data, its ability to capture

non-linear relationships, and its training time
efficiency. The main parameters optimized include
learning rate (1), max_depth, subsample, and

colsample_bytree. The training process was carried out
using an early stopping approach for 50 iterations to
prevent overfitting.

For interpretability, SHAP was applied as a post-hoc
explanation framework. SHAP values were calculated
for each feature in each observation to identify the
positive or negative influence of features on model
predictions. The absolute average SHAP value was
used to compile a feature importance ranking [3], [4].
Additionally, this system visualizes prediction results
and interpretations in interactive maps based on
Folium and GeoPandas, with an additional layer in the
form of an external risk heatmap (rainfall and
population density) that illustrates the socio-
environmental risk per administrative area.

3.5. Evaluation Metrics and Visualization

Model evaluation was performed using three main
metrics for regression and classification. First, Mean
Absolute Error (MAE) was used to measure the
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average absolute error between the actual value yi and
the predicted value i, providing an overview of the
accuracy of the model's predictions without
considering the direction of the error. The equation is
shown in Equation (1).

MAE = - Y, |yi — il (1)

The smaller MAE value, the higher the accuracy of the
model's prediction against the actual data. The second
method uses Root Mean Square Error (RMSE) to
calculate the average square root of the difference
between the actual value and the predicted value.
Different from MAE, RMSE gives a greater penalty to
errors with high deviation. The equation is written in
Equation (2).

1 . A
RMSE = /; 1ol — 9i)? @)

A small RMSE value indicates that the model can
provide stable predictions with low error variation.
Third, use the coefficient of determination (R?) to
assess the proportion of variation in the actual data yi
that can be explained by the model. The equation is
given in Equation (3).

_ IR, Gi-9i?

R?=1
N i-9)?

A3)
where ¥ is the actual mean value. If the R? value is
close to 1, it indicates that the model has excellent
predictive capabilities, while a negative value indicates
that the model's performance is worse than the simple
mean. For trend classification models rising or
stable/down, evaluation is performed using the
Accuracy, Precision, Recall, and F1-Score metrics, as
shown in Equations (4)—(7).

TP+TN

Accuracy = TPATN+FP+FN @
recision = i ®)
TP+FP
Recall = —=~ ©)
TP+FN
F1 = 2 x Precision x Recall ™

Precision x Recall

with TP (True Positive), TN (True Negative), FP
(False Positive), and FN (False Negative) each
representing predictions and actual conditions of
complaint trends. The evaluation process was
conducted using k-fold cross validation (k = 5) to
measure the stability of the model's performance
across various data subsets, as well as reporting the
mean and standard deviation values of the evaluation
metrics.

4. Results and Discussions
4.1. Performance Analysis Model

The XGBoost—-SHAP-based Explainable DSS model
shows stable results with high prediction performance
on the monthly aggregation dataset of public
complaints in DKI Jakarta. Based on the results of
testing the model performance evaluation using three
main metrics, namely Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Coefficient of
Determination (R?). Testing the XGBoost model for
the 2019-2022 period yielded an MAE value of
2.9858, an RMSE of 4.9928, and an R? of 0.8425. The
MAE value of =~ 2.99 indicates that, on average, the
absolute difference between the predicted value and
the actual value of the number of complaints is only
about three units per month in each region. This
indicates that the model is capable of providing
estimates that are very close to the actual data and that
the prediction error is practically small. On the trend
classification side (trend label), the accuracy reached
0.86, with a Precision value of 0.83, Recall of 0.84,
and F1-Score of 0.835.

Meanwhile, the RMSE value of 4.99 illustrates a
slightly higher sensitivity of the model to large errors.
The relatively small difference between RMSE and
MAE (<2) indicates model stability, with only a few
extreme anomalies (outliers) in the monthly complaint
data. Thus, the model has low generalization error and
consistent performance across different administrative
regions. The R? value of 0.8425 indicates that
approximately 84.25% of the variation in the actual
number of complaints can be explained by the features
used in the model, particularly temporal variables such
as complaint lagl, complaint_ ma3, and external
variables such as rainfall mm and population_density.
With an R? above 0.80, the model is categorized as
having “high explanatory power” in the domain of
urban analytics [25], [26], These results show that
XGBoost successfully captures historical patterns and
environmental factors that influence fluctuations in the
number of public complaints.
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Figure 3. Training vs Validation Loss
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The training curve (training vs validation loss) shows
a steady downward trend until it converges at a certain
epoch, with no indication of overfitting.

Based on figure 3, that confirms the effectiveness of
early stopping and regularization in maintaining bias—
variance balance. These results are in line with the
findings of [4], [20], which demonstrate the superiority
of XGBoost in capturing nonlinear relationships in
spatiotemporal data.
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Figure 4. XGBoost Actual vs Predicted

Figure 4 shows a comparison of predictions and actual
data. Shows that the model tends to underestimate
extreme outliers in densely populated areas such as
Cilandak District and Palmerah Subdistrict. This
phenomenon is common in tree ensemble models
because the weighting of quadratic errors at extreme
points is lower than that of the majority of data [13],
[21]. However, the relatively low error (<10%) in most
areas shows the overall stability of the model.

4.2. SHAP Explainability Analysis

The results of the SHAP value analysis provide deep
insights into the factors that influence public complaint
trends.

Figure 5 show the mean absolute SHAP values, the
three features with the highest contribution are
complaint lagl and complaint lag2 (complaints from
the previous month), rainfall mm (monthly rainfall),
and population_density (population density). Positive
SHAP values indicate an increase in the predicted
number of complaints, while negative values decrease
the estimate. This indicates that high rainfall
consistently increases the probability of an increase in
complaints, especially in the infrastructure and
environmental hygiene categories. Conversely, areas
with high coping capacity, such as sub-districts with

active neighborhood coordination (RW), tend to have
negative SHAP values, indicating good complaint
mitigation capabilities.
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Figure 5. SHAP Feature Importance
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Figure 7. SHAP Dependence Plot Fitur complaint lagl

Figure 6 shows the SHAP summary plot visualization
heterogeneous patterns between regions, where the
vulnerability index variable plays a dominant role in
densely populated areas such as Cempaka Putih and
Tanah Abang, while hazards (flooding and inundation)
are the main factors in coastal areas such as
Penjaringan. This interpretation is consistent with
studies by [23], [27], which emphasize the importance
of integrating socio-environmental factors into urban
predictive models. Thus, SHAP not only explains
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“what” is predicted, but also “why” a region
experiences an increase in complaints, making this
system transparent and easy to understand by non-
technical decision makers.

Figure 7 shows the relationship between the
complaint lagl value and its contribution (SHAP
value) to the prediction of the number of complaints. It
can be seen that the higher the number of complaints
in the previous month, the greater the positive effect
on the increase in the following month's prediction.
This indicates a pattern of temporal autocorrelation,
where the volume of complaints tends to continue
consistently over time.

4.3. Spatio-Temporal Risk Visualization

Figure 8. Spatial Distribution of DSS Model Predictions

Figure 8 illustrates the spatial distribution of the DSS
model predictions in the DKI Jakarta area. The color
intensity indicates the estimated number of complaints,
with red zones indicating areas with a high potential
for complaints. This pattern shows a concentration of
risk in densely populated and flood-prone areas.
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Figure 9 shows a comparison of the temporal trends of
actual complaints and model predictions. The
prediction line follows seasonal fluctuation patterns
with relatively low error, indicating the model's ability
to capture temporal dynamics.

Figure 10 shows the results of the SHAP value
analysis, which indicates the most influential factors
on the model prediction. The  variables
complaint lagl, rainfall mm, and population density
are the three main features that contribute positively to
an increase in complaints.
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Figure 11. Combined Risk

Figure 11 presents a combined risk map of rainfall and
population density, which serves as the basis for
identifying priority areas. This visual integration
provides a stronger policy context and supports the
application of DSS in urban planning.

4.4. Discussion and Policy Implications

The Explainable Decision Support System (xDSS)
model based on XGBoost developed in this study
shows excellent predictive performance with an R?
value of 0.8425, MAE of 2.9858, and RMSE of
4.9928. These results confirm that the model is able to
explain most of the variation in the number of public
complaints with relatively small errors. Compared to
conventional methods such as linear regression or
ARIMA, this approach results in a significant
improvement in prediction accuracy and stability,
while maintaining a high level of interpretability
through the integration of the SHAP method.

Interpretability analysis shows that the complaint lagl
and complaint ma3 features contribute most to the
prediction results, confirming the important role of
historical temporal patterns in influencing public
complaint behavior. In addition, contextual variables
such as rainfall mm and population_density also have
a positive influence, indicating a relationship between
environmental factors and regional density with an
increase in the volume of complaints. The non-linear
pattern shown in the SHAP Dependence Plot (Figure
7) confirms that high rainfall intensity significantly
increases the probability of a surge in public
complaints, particularly those related to drainage and
sanitation issues [28].

In terms of implementation, the xDSS model offers
great potential for local governments, particularly the
DKI Jakarta Provincial Government, to optimize the
management of predictive data-based public services.
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This system enables early identification of high-risk
areas and periods, allowing for proactive resource
allocation. The integration of explainable Al (XAI)
components  ensures the  transparency and
accountability of algorithmic decisions, in line with
the principles of Good Governance and Responsible
Al in modern governance [29]. In addition, the spatial
mapping results from the model can be used to design
more precise preventive policies for environmental
conditions and population density.

Conceptually, this research reinforces the role of
explainable machine learning in public decision-
making. The XGBoost model combined with SHAP
analysis not only improves prediction accuracy but
also provides explanations that can be interpreted
logically by policymakers. This approach supports the
transition to Smart Governance, where public policies
are formulated based on transparent and accountable
predictive analytics. Thus, this xDSS system has the
potential to become a national prototype in the ethical
and evidence-based application of Al for managing
public complaints in urban areas.

5. Conclusion

This study successfully developed an Explainable
Decision Support System (xDSS) based on the
XGBoost algorithm integrated with the SHAP
(SHapley Additive Explanations) method to analyze
and predict spatial and temporal trends in public
complaints in DKI Jakarta Province. The evaluation
results showed excellent model performance with an
R2 value of 0.8425, MAE of 2.9858, and RMSE of
4.9928, proving the model's ability to explain more
than 84% of the actual data variation with a low error
rate. SHAP-based interpretability analysis identified
that temporal features such as complaint lagl and
complaint ma3 are the main factors influencing
predictions, while external variables such as rainfall
(rainfall_mm) and population density
(population_density) also contribute significantly.
These findings confirm that the dynamics of public
complaints are greatly influenced by a combination of
historical factors and environmental conditions.

In practical terms, the developed xDSS system not
only provides accurate predictions but also increases
the transparency and accountability of data-based
decisions through feature explanations that are easily
understood by policy makers. The integration of this
explainable Al approach reinforces the concept of
Smart Governance and supports adaptive, proactive,
and evidence-based policy making. This model can be
used as an early warning system to project spikes in
public complaints and assist the government in
allocating resources efficiently. In the future, model
development can be directed towards the integration of
deep learning-based spatial-temporal models and the
application of the system in other cities in Indonesia to
expand the validity and generalization of the model in

the context of public complaint management and smart
city management.
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