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Abstract

Machine learning has achieved diagnostic performance comparable to clinical experts on medical imaging, yet centralized
training paradigms necessitate patient data aggregation, risking violations of privacy regulations such as GDPR and
HIPAA. In 2023, 1,853 healthcare data breaches were reported in the United States, compromising over 133 million medical
records, rendering raw inter-institutional data exchange increasingly unsustainable. Federated Learning (FL) offers a viable
solution by enabling collaborative model training without data transfer. However, prior studies predominantly evaluate
single algorithms and often neglect non-1ID Dirichlet-distributed conditions and probabilistic calibration metrics like log-
loss. This study rigorously compares FedAvg, FedProx, FedSVRG, and FedAtt across three MedMNIST v2 datasets—
PneumoniaMNIST (binary), DermaMNIST, and BloodMNIST (multi-class)—using three clients under non-IID Dirichlet
partitioning (0=0.1) over 50 communication rounds. FedProx demonstrates the most consistent performance and stability,
achieving accuracy of 0.9521 and log-loss of 0.1850 on PneumoniaMNIST; 0.8595 and 0.4066 on BloodMNIST; and 0.5747
and 1.5996 on DermaMNIST. It also exhibits fastest convergence and superior probability calibration. Thus, FedProx’s
proximal regularization enhances FL robustness against extreme clinical heterogeneity, establishing it as a scalable,
privacy-preserving framework for cross-institutional medical image diagnostics.
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1. Introduction transmitting only parameter updates to a central server
for global aggregation. In the medical domain, inter-
institutional data heterogeneity is not a simulated
artifact but a true reflection of clinical specialization:
dermatology oncology centers predominantly manage
melanoma cases, whereas general hospitals handle
markedly lower proportions [15], [16]. Such variation
induces highly non-independent and identically
distributed (non-IID) data distributions, severely
degrading the efficacy of conventional FL algorithms
[17]. Empirical studies demonstrate that Federated
Averaging (FedAvg)—the foundational method—
suffers accuracy degradation of up to 25.7% under
extreme non-IID conditions compared to IID settings
[18]. This decline is exacerbated by extreme class
imbalance, where minority classes—such as rare
. . diseases—may constitute less than 1% of the global
longer sustainable in modern healthcare ecosystems dat dering their diaenostic sienals vulnerable to
(81, [9], [10], [11]. ata, rendering | ENOSHC S18 )
suppression during aggregation [19], [20], [21]. This
Federated Learning (FL) offers an alternative phenomenon not only impairs generalization but also
paradigm by enabling collaborative model training amplifies predictive bias, particularly in clinically
without relocating sensitive data from its origin [12], critical classes [22].
[13], [14]. Each medical institution—acting as a
client—trains a local model on its internal dataset,

Machine learning has achieved diagnostic performance
on par with clinical experts across diverse medical
image analysis tasks, including thoracic abnormality
detection and skin lesion classification, as synthesized
in recent comprehensive reviews [1], [2], [3], [4]
However, centralized training paradigms necessitate
cross-institutional —aggregation of patient data,
potentially violating stringent privacy regulations such
as the European Union’s General Data Protection
Regulation (GDPR) and the United States’ Health
Insurance Portability and Accountability Act (HIPAA)
[5], [6], [7].- In 2023 alone, 1,853 healthcare data
breaches were reported in the United States,
compromising over 133 million patient records,
underscoring that direct exchange of raw data is no
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Although recent literature has explored FL
applications in medicine, most studies evaluate a
single algorithm without systematic comparison,
neglect the Dirichlet distribution as a standard for
simulating non-IID  heterogeneity, and omit
comprehensive evaluation metrics, including log-loss
for probability calibration: Author et al. tested only
FedEst-NIID on tabular MIMIC-IV data without
images, Dirichlet partitioning, or log-loss [23]; Author
et al. evaluated FedAvg+DP on a single COVID-19
cohort with departmental heterogeneity, excluding log-
loss and probabilistic simulation [24]; Author et al.
used FedAvg as a proof-of-concept on skin lesions
across three sites with real clinical non-I1ID data [25];
and Author et al. implemented SCAFFOLD on a
single hematology dataset with fixed labels, with
neither algorithm comparison nor log-loss [26]. The
collective absence of multi-algorithm comparative
evaluation, representative Dirichlet-based non-IID
simulation, and calibration metrics such as log-loss
constitute a significant methodological gap, limiting
deep understanding of FL robustness and reliability in
heterogeneous clinical environments.

To address these challenges, several advanced FL
variants have been proposed with adaptive
mechanisms. Federated Proximal (FedProx) introduces
proximal regularization to constrain local model
divergence from the global model [27], [28]; Federated
Stochastic Variance Reduced Gradient (FedSVRG)
leverages variance control to mitigate gradient
oscillation in heterogeneous data [29]; whereas
Federated Attentive Aggregation (FedAtt) employs
cosine  similarity-based attention to prioritize
informative updates [30]. Despite their theoretical

promise, systematic comparative evaluations—
particularly on medical imaging datasets with
Dirichlet-based non-I1D partitioning that
probabilistically replicates inter-institutional

variation—remain scarce. Moreover, comprehensive
evaluation metrics—including accuracy, precision,
recall, F1-score, ROC-AUC, and log-loss (specifically
assessing probability calibration yet rarely utilized in

medical FL literature)—have not been thoroughly
explored to reveal convergence dynamics and long-
term stability.

This study aims to bridge these methodological gaps
by rigorously evaluating the performance of FedAvg,
FedProx, FedSVRG, and FedAtt on three medical
imaging datasets from the MedMNIST v2 collection
[15]: PneumoniaMNIST (5,856 samples, binary
classification), DermaMNIST (10,015 samples, 7
classes), and BloodMNIST (17,092 samples, 8§
classes). Data are partitioned across three
heterogeneous clients using a low-concentration
Dirichlet distribution, yielding statistically significant
inter-client class distribution disparities. This approach
enables in-depth analysis of algorithmic resilience to
both statistical and system heterogeneity while
providing critical insights for developing reliable FL
systems in real-world clinical settings [31].

2. Research Methods

Figure 1 illustrates the overall research workflow. The
dataset is initially loaded and partitioned into three
heterogeneous clients using a Dirichlet distribution to
simulate non-IID conditions. Each client subsequently
performs pixel intensity normalization. Next, 5-fold
cross-validation based on StratifiedKFold is applied to
each client. In each fold, every client trains a local
CNN model and then transmits the local model
weights to the center [32]. The center performs global
aggregation separately to produce four global models:
Federated Averaging (FedAvg), Federated Proximal
(FedProx), Federated Stochastic Variance Reduced
Gradient (FedSVRG), and Federated Attentive
Aggregation (FedAtt). Evaluation is conducted on the
local models using each client’s test set, as well as on
the global models using all three client test sets, with
computation of accuracy, precision, recall, F1-score,
ROC-AUC, and log-loss. The processes of local
training, weight transmission, aggregation, and
evaluation are repeated for S0 communication rounds.

5-Fold Cross-Validation

dataset is divided into 3
heterogeneous clients
using Dirichlet
distribution

>

pixel intensities:
x=x/255.0

pheumoniamnist,
dermamnist,

Each client normalizes

bloodmnist

per Client
Each client:
Local Training (CNN) | |Step 1 —
> 50 Communication
Weight Transmission | Rounds
to Server Step2 > (Steps 1-3 are repeated
for 50 rounds.)
Global Aggregation | |Step 3 -

Figure 1. Research Flow
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2.1. Dataset

This study utilizes three datasets, namely
PneumoniaMNIST, DermaMNIST, and BloodMNIST,
which encompass variations in classification types,
including both binary and multiclass tasks [33]. These
datasets were selected to represent diverse data
characteristics within the context of evaluating
federated learning algorithms. A comprehensive
summary of each dataset is presented in Table 1, while
Figure 2 displays example samples from each class
across the respective datasets.

The datasets are subsequently partitioned into three
heterogeneous clients to simulate non-IID conditions
commonly encountered in healthcare federated
learning applications. The partitioning is performed
using a Dirichlet distribution to probabilistically
control class proportions across clients, thereby
reflecting real-world variations in patient populations
across different medical institutions [31].

The class proportion on client k for class ¢ is
determined via a random vector drawn from the
Dirichlet distribution, as shown in Equation 1.

T, ~ Dirichlet(a - 1), ¢ €{0,1},k = 1,23 (1)

Where a is the concentration parameter that controls
the degree of heterogeneity (a smaller a yields a more

imbalanced distribution), and f{ is a one-vector of
dimension K = 3. Equation 1 produces a proportion

ﬁz = (T[C,ll T[C,Zl T[C,3)l Zi:l T[c,k = 1

The parameter « in the Dirichlet distribution was set to
0.1 to increase data imbalance across clients. The
partitioning ensures each sample is assigned to one
client without overlapping. This configuration
preserves the integrity of the non-IID simulation,
common in distributed healthcare systems. The design
supports evaluating method robustness against data
diversity in real-world institutions. This setting enables
realistic evaluation and shows its generalization across
clients. The distribution of the datasets across the three
clients is presented in Tables 2—4, while the results of
the Kolmogorov-Smirnov test between clients are
shown in Table 5.

Based on Tables 2-5, the class distribution and mean
intensity across clients differ significantly in all
datasets (p < 0.05). The Chi-square test was employed
to assess whether the class distribution across clients
differs statistically, while the Kolmogorov-Smirnov
(KS) test was used to compare the distribution of mean
pixel intensity across clients [34], [35]. The significant
results from both tests confirm that each dataset is
genuinely heterogeneous, making it suitable for
simulating federated learning scenarios, where models
are frequently confronted with imbalanced and
heterogeneous data.

2.2. Federated Learning (FL)

Federated Learning (FL) is a distributed machine
learning paradigm that enables collaborative model
training across multiple clients without exchanging
raw data, preserving privacy and reducing

Table 1. Medical Image Dataset Summary

Dataset Name

Classification Type Total Samples Class Distribution (All Data)

PneumoniaMNIST Binary 5,856

DermaMNIST Multiclass 10,015

BloodMNIST Multiclass 17,092

Class 0 (Normal): 1,583 (27.03%)
Class 1 (Pneumonia): 4,273 (72.97%)

Class 0 (akiec): 327 (3.27%)
Class 1 (bec): 514 (5.13%)
Class 2 (bkl): 1,099 (10.97%)
Class 3 (df): 115 (1.15%)
Class 4 (mel): 1,113 (11.11%)
Class 5 (nv): 6,705 (66.95%)
Class 6 (vasc): 142 (1.42%)

Class 0 (basophil): 1,218 (7.13%)

Class 1 (eosinophil): 3,117 (18.24%)

Class 2 (erythroblast): 1,551 (9.07%)

Class 3 (immature granulocytes): 2,895 (16.94%)
Class 4 (lymphocyte): 1,214 (7.10%)

Class 5 (monocyte): 1,420 (8.31%)

Class 6 (neutrophil): 3,329 (19.48%)

Class 7 (platelet): 2,348 (13.74%)
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Figure 2. Example Images per Class for Datasets PneumoniaMNIST, DermaMNIST, and BloodMNIST
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Table 2. PneumoniaMNIST

Total Samples Client 1 Class Distribution Client 2 Class Distribution Client 3 Class Distribution Chi-square p-value
5,360 Class 0 (Normal): 1,043 Class 0 (Normal): 75 Class 0 (Normal): 465 1,003.47 1.25e-
(39.4%) (4.0%) (56.4%) 218
Class 1 (Pneumonia): 1,602 Class 1 (Pneumonia): 1,815 Class 1 (Pneumonia): 360
(60.6%) (96.0%) (43.6%)
Table 3. DermaMNIST
Total Samples Client 1 Class Distribution ~ Client 2 Class Distribution Client 3 Class Distribution Chi-square p-value
3,569 Class 0 (akiec): 183 (5.1%) Class 0 (akiec): 84 (5.2%) Class 0 (akiec): 60 (1.2%) 7,288.59 0.00e+00

Class 1 (bee): 20 (0.6%)
Class 2 (bkl): 550 (15.4%)
Class 3 (df): 21 (0.6%)
Class 4 (mel): 28 (0.8%)
Class 5 (nv): 2,717 (76.1%)
Class 6 (vasc): 50 (1.4%)

(65.9%)

Class 1 (bee): 35 (2.2%)
Class 2 (bkl): 319 (19.8%) Class 2 (bkl): 230 (4.8%)
Class 3 (df): 39 (2.4%)
Class 4 (mel): 1,065

Class 5 (nv): 35 (2.2%)

Class 1 (bec): 459 (9.5%)

Class 3 (df): 55 (1.1%)
Class 4 (mel): 20 (0.4%)
Class 5 (nv): 3,953
(81.8%)

Class 6 (vasc): 38 (2.4%) Class 6 (vasc): 54 (1.1%)

Table 4. BloodMNIST

Total Samples Client 1 Class Distribution

Client 2 Class Distribution Client 3 Class Distribution

Chi-square p-value

8,289 Class 0 (basophil): 353 Class 0 (basophil): 258 Class 0 (basophil): 607 16,242.23  0.00e+00
(4.3%) (5.0%) (16.8%)
Class 1 (eosinophil): 141 Class 1 (eosinophil): 2,926 Class 1 (eosinophil): 50
(1.7%) (56.4%) (1.4%)
Class 2 (erythroblast): 863  Class 2 (erythroblast): 638 Class 2 (erythroblast): 50
(10.4%) (12.3%) (1.4%)

Class 3 (immature
granulocytes): 339 (4.1%)

Class 3 (immature
granulocytes): 362 (7.0%)

Class 3 (immature
granulocytes): 2,194

Class 4 (lymphocyte): 1,134 Class 4 (lymphocyte): 30 (60.7%)

(13.7%) (0.6%) Class 4 (lymphocyte): 50
Class 5 (monocyte): 821 Class 5 (monocyte): 549  (1.4%)

(9.9%) (10.6%) Class 5 (monocyte): 50
Class 6 (neutrophil): 2,370  Class 6 (neutrophil): 394  (1.4%)

(28.6%) (7.6%) Class 6 (neutrophil): 565
Class 7 (platelet): 2,268 Class 7 (platelet): 30 (15.6%)

(27.4%) (0.6%) Class 7 (platelet): 50 (1.4%)

Table 5. Kolmogorov-Smirnov Test Results (Average Intensity Distribution)

Dataset

Scenario

p-value

PneumoniaMNIST client 1 vs client 2 4.68e-12
PneumoniaMNIST client 1 vs client 3 2.03e-02
PneumoniaMNIST client 2 vs client 3 9.10e-14

DermaMNIST
DermaMNIST
DermaMNIST
BloodMNIST
BloodMNIST
BloodMNIST

client 1 vsclient 2 5.65e-24
client 1 vsclient 3 1.22e-02
client 2 vsclient 3 7.01e-33
client 1 vsclient 2 1.15e-320
client 1 vsclient 3 9.01e-321
client 2 vsclient 3 2.35e-31

communication costs [36]. Each client independently
trains a local model using its private dataset and
periodically sends the model parameters (weights) to a
central server for global aggregation [37]. The server
then updates and redistributes the global model to all
clients, allowing continuous improvement through
multiple communication rounds [38]. This iterative
process ensures that knowledge from diverse data
sources is integrated without compromising data
confidentiality. In this study, FL addresses data
heterogeneity and privacy concerns across medical
institutions. The overall workflow of FL implemented
in this research is illustrated in Figure 3, providing a

clearer overview of the collaborative training process.
This framework also allows evaluating model
performance under non-IID data distributions and
highlights robustness when deployed across diverse
clients.

2.3. Federated Averaging (FedAvg)

Federated Averaging (FedAvg) is the foundational
algorithm in FL that performs aggregation of local
model parameters via a weighted average based on the
proportion of each client's data size relative to the total
data [39]. At communication round t, the server
initializes the global model w(®, after which each
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Figure 3. Workflow of Federated Learning

client k performs local updates over several epochs to
produce W,Etﬂ). Global aggregation is performed

according to Equation 2.

wEtD) = 25:1 %WIEHI) )
Where n,, is the number of samples at client k, n =
YK_,my is the total number of samples, and K is the
number of clients. Equation 2 ensures that each client's
contribution to the global model is proportional to its
dataset size, thereby preventing dominance by clients
with large datasets and maintaining overall data
representation balance.

2.4. Federated Proximal (FedProx)

FedProx is an enhancement over FedAvg that
incorporates a proximal term to address system and
data heterogeneity [27]. The algorithm constrains the
deviation of local models from the global model
during local training. At client k, the local objective
function is modified to Equation 3.

min fi, (W) + 5 [w —w | 3)
Where f,(w) is the local loss function, w® is the
global model at round t, and p is the proximal
regularization coefficient. Equation 3 adds a quadratic
penalty on the distance between local and global
parameters. After local optimization, aggregation
follows the same weighted averaging as in Equation 2.

2.5. Federated Stochastic Variance Reduced Gradient
(FedSVRG)

FedSVRG, in this implementation based on the
SCAFFOLD framework, uses control variates to
reduce gradient variance and accelerate convergence
on non-IID data [40]. The algorithm maintains two
control variables: ¢ (global) and ¢, (local per client).
The local gradient update at client k is modified
according to Equation 4.

G = Vfilw) —c + ¢ 4

Where Vfi(w,) is the local stochastic gradient.
Equation 4 corrects the local gradient by subtracting
the client-specific variance component (c;) and adding

the global average variance (c). After local training,
control variations are updated based on parameter

differences, Aw, = wj, —w®, then ¢ « ¢ + %Z Awy,
and ¢ < c.

2.6. Federated Attentive Aggregation (FedAtt)

FedAtt introduces an attention mechanism to assign
adaptive aggregation weights based on cosine
similarity between local and global model parameters
[30]. At each round, the server computes a similarity
score s, for each client k using Equation 5.

© , (t+1)
l

Sk = Zlcosine_similarity(w s Wy

)

Where index [ iterates over all parameter layers.
Equation 5 measures the extent to which client k's
local update aligns with the current global model.
Then, attention weights a; are computed via softmax
according to Equation 6.

— _exp(sk)
Yjexp(s;)

o (6)
and global aggregation is performed according to
Equation (7).

w+D) — legz (t+1)

1 AWy

(M

Equation 6 ensures that ), a;, = 1, distributing weights
probabilistically. Equation 7 enables the server to
prioritize clients with more informative or consistent
updates.

2.7. Local Model Architecture: Convolutional Neural
Network (CNN)

The local model employed by each client is a
Convolutional ~Neural Network (CNN). The
architecture consists of two convolutional layers with
ReLU activation functions, one max pooling layer for
spatial dimension  reduction, dropout  for
regularization, and two fully connected layers at the
end [41]. This design enables hierarchical feature
extraction from image data. For binary classification
tasks, the local model architecture is summarized in
Table 6.
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Table 6. CNN Architecture for Binary Classification

Output: Average local and global performance metrics for each
algorithm

Layer Configuration Output Shape Parameter
Input  Citra grayscale / RGB IxHxW/3 -
xHxW
convl Conv2d(l — 16, kernel 3x3, 16 xHxW 160
stride 1, padding 1)
ReLU - 16 xHxW 0
conv2 Conv2d(16 — 32, kernel 3x3, 32 xHxW  4.640
stride 1, padding 1)
ReLU - 32xHxW 0
pool  MaxPool2d(kernel 2x2, stride 2) 32 x (H/2) x 0
(W/2)
dropout Dropout(p=0.25) 32 x (H2) x 0
(W/2)
flatten — 1568 0
fel Linear(1568 — 64) 64 100.416
ReLU - 64 0
fc2 Linear(64 — 1) 1 65
For multiclass classification tasks, a similar

architecture is used with adjustments to the input
channels and final output dimension, as shown in
Table 7.

Table 7. CNN Architecture for Multiclass Classification

Layer Configuration Output Shape Parameter
. IxHxW/3
Input  Citra grayscale / RGB <HxW -
Conv2d(3 — 16, kernel 3x3,
convl iride 1, padding 1) 16 H>W 448
ReLU - 16 xHxW 0
Conv2d(16 — 32, kernel 3x3,
conv2 stride 1, padding 1) 32xHXxW  4.640
ReLU - 32xHxW 0
. 32 x (H2) x
pool  MaxPool2d(kernel 2x2, stride 2) (W/2) 0
_ 32 x (H/2) x
dropout Dropout(p=0.25) W/2) 0
flatten — 1568 0
fel Linear(1568 — 64) 64 100.416
ReLU - 64 0
fc2 Linear(64 — 7) 7 455

2.7. Experiments and Evaluation

Experiments were conducted to evaluate the
performance of four federated learning algorithms—
Federated Averaging (FedAvg), Federated Proximal
(FedProx), Federated Stochastic Variance Reduced
Gradient (FedSVRG), and Federated Attentive
Aggregation (FedAtt). The entire process—from data
loading, non-IID partitioning, initialization of 5-fold
stratified cross-validation, local training, global
aggregation, to metric evaluation structured in
Algorithm 1.

Algorithm 1. Experimental Flow of Federated Learning with 5-Fold
Stratified Cross-Validation

Steps:
1. Load dataset D.
Normalize pixel intensities of each sample to the range [0, 1].

2. Partition dataset D into K non-IID subsets using the Dirichlet(a)
distribution.
Each class is allocated to clients proportionally based on a random
vector sampled from the Dirichlet distribution.

3. For each clientk=1, ..., K:
Apply StratifiedKFold (5-fold) on subset D_k.
Generate 5 pairs of datasets (train_data_ ik, test_data_i"k), for i
=1,..,5.

4. Initialize the global model w”(0) for four algorithms:
FedAvg, FedProx, FedSVRG, and FedAtt using a CNN
architecture.
Initialize control variates ¢(0) and ¢_k~(0) = 0 (for FedSVRG
only).

W

. For each communication round t=1to T:
For each foldi=1to 5:
Local Training Phase:
For each clientk =1, ..., K:

Copy global model: w_kA(t) = wA(t—1).

Perform local updates using the loss function:
- CrossEntropyLoss (for multi-class) or
- BCEWithLogitsLoss (for binary).

Add a proximal term to the objective function (FedProx

only).

Apply gradient correction with control variates

(FedSVRG only).

Global Aggregation Phase (performed separately for each
algorithm):
FedAvg: w(t) =X _(k=1)"K (n_k/n) * w_k*(t)
FedProx: wA(t) =% (k=1)"K (n_k/n) * w_k"\(t) after local
optimization with the proximal term
FedSVRG: Update c and c_k based on Aw_k, then w”(t) =
(1/K)Zw_kA1)
FedAtt: Compute attention scores s_k, normalize via
softmax to obtain o_k, then w(t) =X o_k * w_k"(t)

Evaluation Phase:
Local model evaluation:
For each clientk=1, ..., K:
Evaluate w_k”\(t) on test_data_i"k — metric_k.
Average local metric = (1 / K) £ metric_k.

Global model evaluation:
For each clientk=1, ..., K:
Evaluate w_alg”\(t) on test_data_i"k — metric"k.
Average global metric = (1 / K) X metric’k.

Save all metrics for each round and each fold.

6. Compute the final average of all metrics over T rounds and 5
folds for each algorithm.

7. Return the average local and global performance for FedAvg,
FedProx, FedSVRG, and FedAtt.

Input: Global dataset D, number of clients K, Dirichlet parameter o,
number of communication rounds T

Performance evaluation was carried out using six
classification metrics: accuracy, precision, recall, F1-
score, ROC-AUC, and log-loss [42]. Each metric was
computed based on predictions from both local and
global models on test data. The definitions and
formulations of each metric are presented sequentially.
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The first metric is accuracy, which measures the
proportion of correct predictions relative to the total
number of samples, given by Equation 8.

TP+TN

Accuracy = —
y TP+TN+FP+FN

®)

Where TP is true positive, TN is true negative, FP is
false positive, and FN is false negative.

The second metric is precision, which measures the
proportion of positive predictions that are positive,
defined in Equation 9.

TP
TP+FP

Precision =

€

Equation 9 is critical in applications where false
positives carry high consequences, such as disease
detection.

The third metric is recall (or sensitivity), which
measures the proportion of actual positive cases
successfully detected, given by Equation 10.
TP
TP+FN

Recall =

(10)

Equation 10 emphasizes the model's ability to identify
all positive instances, which is crucial when false
negatives are costly.

The fourth metric is the F1-score, the harmonic mean
of precision and recall, formulated in Equation 11.

PrecisionXRecall
Fl-score =2 X —M—

(1)
Equation 11 provides a balanced measure between
precision and recall, making it suitable as a single
metric for imbalanced data.

The fifth metric is ROC-AUC (Area Under the
Receiver Operating Characteristic Curve), which
assesses the model's ability to distinguish between
positive and negative classes across various thresholds,
computed as the integral of the ROC curve. An AUC
of 1 indicates perfect separation, while AUC = 0.5
corresponds to random guessing.

Precision+Recall

The sixth metric is log-loss (or cross-entropy loss),
which evaluates the quality of predicted probabilities.
For binary classification, it is defined in Equation 12.

Log-loss = — =%, [y; log(3,) + (1 — ) log(1 —
Pl (12)

For the multiclass case, log-loss is given by Equation
13.

N

1 —~
Log-loss = _ﬁZizl Yé-1Yiclog(pre) (13)

Where y; is the true label, p, is the predicted
probability, N is the number of samples, and C is the

number of classes. Equations 12 and 13 more heavily
penalize confident incorrect predictions, thus
encouraging well-calibrated probabilities.

3. Results and Discussions

This study evaluates the performance of four federated
learning algorithms—FedAvg, FedProx, FedSVRG,
and FedAtt—alongside local client models on three
medical imaging datasets partitioned in a non-IID
manner using a Dirichlet distribution with a low
concentration parameter to simulate real-world
heterogeneity across healthcare institutions. The
experimental protocol employs 5-fold stratified cross-
validation per client and conducts training over 50
communication rounds, with evaluation metrics
including accuracy, precision, recall, F1-score, ROC-
AUC, and log-loss, computed as averages across all
folds and clients. Table 8 presents the mean
performance at three critical points—Round 1
(initialization), Round 25 (mid-convergence), and
Round 50 (final stabilization)—for the
PneumoniaMNIST, DermaMNIST, and BloodMNIST
datasets, while Figure 4 illustrates the complete trends
from Round 1 to Round 50 across all six metrics,
providing a longitudinal view of convergence speed,
stability, and response to data heterogeneity.

On the PneumoniaMNIST dataset, a binary
classification task with moderate imbalance, FedProx
consistently demonstrates the best performance
throughout the communication rounds. At Round 50, it
achieves accuracy of 0.9521, precision of 0.9439,
recall of 0.9763, Fl-score of 0.9589, ROC-AUC of
0.9852, and log-loss of 0.1850—significantly
outperforming the local model (accuracy 0.7642) and
FedAvg (accuracy 0.7097). A sharp improvement is
observed by Round 25, with accuracy reaching 0.9470
and log-loss dropping to 0.1521, indicating that the
proximal term effectively constrains local model
deviation from the global model, thereby accelerating
convergence and enhancing generalization under non-
IID conditions. FedSVRG and FedAtt achieve nearly
identical values at Round 50, with accuracy around
0.9461, Fl-score of 0.9525, and ROC-AUC near
0.977, but log-loss increases from approximately 0.177
at Round 25 to 0.2687, suggesting degradation in
probability calibration in later stages. FedAvg
maintains high recall above 0.995 from Round 1 but
keeps precision below 0.700 through Round 50,
reflecting a strong bias toward predicting the majority
class. The local model exhibits fluctuations, peaking at
accuracy 0.7836 at Round 25 before declining to
0.7642 at Round 50, underscoring the limitations of
isolated training due to constrained data size and
diversity per client.
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Table 8. Mean Performance (5-Fold) at Rounds 1, 25, and 50 Across All Datasets

Dataset Model Round Accuracy Precision Recall ~ FI-Score ROC-AUC Log-Loss
PneumoniaMNIST Lokal 1 0,7462 0,5538 0,6594  0,5968 0,7509 0,4550
25 0,7836 0,6085 0,6323  0,6166 0,7538 0,4123
50 (Final Model) 0,7642 0,5828 0,6456  0,6068 0,7921 0,4267
FedAvg 1 0,6672 0,6672 1,0000  0,7804 0,7726 0,6541
25 0,6992  0,6903  0,9961  0,7968 0,7603 0,6189
50 (Final Model)  0,7097  0,6998  0,9955  0,8035 0,8367 0,6130
FedProx 1 0,7170 0,7018 0,9994  0,8071 0,9600 0,5623
25 0,9470 0,9322 0,9772  0,9531 0,9861 0,1521
50 (Final Model) 0,9521 0,9439  0,9763  0,9589 0,9852 0,1850
FedSVRG 1 0,6724 0,6703 0,9998  0,7828 0,8219 0,6523
25 0,9434 0,9339  0,9691  0,9500 0,9790 0,1774
50 (Final Model) 0,9461 0,9360 09716  0,9525 0,9772 0,2687
FedAtt 1 0,7482 0,8257  0,8511  0,8037 0,8576 0,5575
25 0,9438 0,9349  0,9687  0,9504 0,9790 0,1766
50 (Final Model) 0,9461 0,9360  0,9716  0,9525 0,9773 0,2687
DermaMNIST Lokal 1 0,7444 0,1113 0,1425  0,1220 0,6814 0,8444
25 0,7455 0,1104  0,1445 0,1246 0,7308 0,7851
50 (Final Model) 0,7464 0,1066  0,1429  0,1219 0,7556 0,7892
FedAvg 1 0,5339 0,0763 0,1429  0,0861 0,6458 1,4891
25 0,5339 0,0763 0,1429  0,0861 0,6331 1,4996
50 (Final Model) 0,5339 0,0763 0,1429  0,0861 0,7061 1,4642
FedProx 1 0,5339 0,0763 0,1429  0,0861 0,7172 1,4723
25 0,5653 0,2460  0,2269  0,1790 0,8114 1,5342
50 (Final Model) 0,5747 0,2919  0,2652  0,2190 0,8178 1,5996
FedSVRG 1 0,5339 0,0763 0,1429  0,0861 0,5598 1,5901
25 0,5559 0,2594  0,2905  0,2194 0,7664 1,8269
50 (Final Model) 0,5438 0,2528 0,2700  0,2125 0,7397 2,4578
FedAtt 1 0,5339 0,0763 0,1429  0,0861 0,5462 1,6044
25 0,5557 0,2593 0,2957  0,2201 0,7662 1,8113
50 (Final Model)  0,5439 0,2532 0,2705  0,2133 0,7396 2,4540
BloodMNIST Lokal 1 0,6853 0,2653 0,2862  0,2638 0,7564 0,9850
25 0,6518 0,2271 0,2605  0,2340 0,7150 1,0638
50 (Final Model) 0,6315 0,2114  0,2426  0,2140 0,7194 1,0999
FedAvg 1 0,1816 0,0530  0,1568  0,0640 0,7690 2,0899
25 0,1952 0,0555 0,1731  0,0727 0,7133 1,9878
50 (Final Model) 0,1831 0,0320  0,1439  0,0481 0,7319 1,9868
FedProx 1 0,3079 0,1921 0,3200 0,1944 0,8535 1,8511
25 0,8554 0,7511 0,8570  0,7764 0,9846 0,3938
50 (Final Model) 0,8595 0,7571 0,8619  0,7834 0,9848 0,4066
FedSVRG 1 0,1965 0,0646  0,1808 0,0771 0,7544 1,9529
25 0,7683 0,6446  0,7602  0,6681 0,9602 0,8231
50 (Final Model) 0,7568 0,6441 0,7501  0,6618 0,9534 1,0513
FedAtt 1 0,2756 0,0543 0,1643  0,0679 0,7488 1,8887
25 0,7688 0,6448 0,7595  0,6680 0,9602 0,8227
50 (Final Model) 0,7569 0,6434  0,7487  0,6607 0,9534 1,0509
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Figure 4. Average 5-Fold Performance Convergence Trends from Rounds 1 to 50 across All Datasets: (a) PneumoniaMNIST, (b)
DermaMNIST, and (c¢) BloodMNIST

The DermaMNIST dataset, involving multiclass
classification with extreme imbalance, reveals global
aggregation failure across nearly all federated learning
algorithms. FedAvg, FedSVRG, and FedAtt remain
stagnant at accuracy 0.5339 and F1-score 0.0861 from

SROIe

Round 1 to Round 50, equivalent to majority-class
guessing with no meaningful learning of minority
classes. FedProx shows gradual progress, improving to
accuracy 0.5747 and Fl-score 0.2190 by Round 50,
yet these values remain far below clinically acceptable
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performance, while log-loss stays high above 1.4642
for FedAvg and exceeds 2.45 for FedSVRG and
FedAtt in the final phase. Conversely, the local model
maintains stable accuracy around 0.746 and improves
ROC-AUC from 0.6814 at Round 1 to 0.7556 at
Round 50, confirming that when one class dominates
over 66% of global data and up to 81% on certain
clients, local training outperforms federated
collaboration, which dilutes rare class signals during
aggregation.

To mitigate the observed global aggregation failure
under severe class imbalance, where minority class
signals are diluted during standard weighted
averaging, future extensions could incorporate
advanced aggregation strategies such as class-wise or

class-balanced aggregation (e.g., weighting
contributions per class or using distribution-
discrepancy-based methods to prioritize minority
classes during aggregation) [43], [44], [45].
Additionally,  personalized  federated learning

approaches (e.g., FedPer, pFedMe, Ditto, or Per-
FedAvg) offer promising alternatives by allowing
client-specific model adaptations, which decouple
shared global representations from personalized heads
to better preserve local class distributions and improve
minority class performance in extreme non-IID
scenarios like DermaMNIST [46], [47], [48]. These
extensions will be explored in future work to enhance
robustness in highly imbalanced medical imaging
tasks.

On the BloodMNIST dataset, an eight-class multiclass
task with moderate imbalance, FedProx again
dominates, achieving accuracy 0.8595, precision
0.7571, recall 0.8619, Fl-score 0.7834, ROC-AUC
0.9848, and log-loss 0.4066 at Round 50, with peak
performance reached by Round 25 (accuracy 0.8554,
log-loss 0.3938). FedSVRG and FedAtt reach
accuracy of 0.7568 and 0.7569, respectively, with F1-
scores around 0.661 at Round 50, but log-loss rises
from approximately 0.823 at Round 25 to over 1.05,
indicating probability calibration degradation over
iterations. FedAvg experiences a drastic decline to
accuracy 0.1831 and Fl-score 0.0481 by Round 50,
while the local model degrades from accuracy 0.6853
at Round 1 to 0.6315 at Round 50, likely due to
overfitting on highly limited and imbalanced per-client
subsets. Figure 4 reveals clear convergence patterns:
FedProx exhibits rapid and stable improvement across
all metrics for PneumoniaMNIST and BloodMNIST,
with consistent log-loss reduction, whereas FedSVRG
and FedAtt show oscillations in precision and recall
before plateauing, and all federated learning curves
flatten at low levels for DermaMNIST while the local
model sustains gradual ROC-AUC improvement.

These findings conclude that FedProx is the most
effective and robust federated learning algorithm for
medical image classification under non-IID
heterogeneity, particularly for binary and moderately

imbalanced multiclass tasks, due to its ability to
balance local contributions with global consistency via
proximal regularization. In contrast, FedAvg,
FedSVRG, and FedAtt fail completely under extreme
imbalance conditions as seen in DermaMNIST. The
main contributions of this study include providing a
comprehensive benchmark using per-client 5-fold
stratified cross-validation on non-IID partitioned
MedMNIST datasets, identifying global aggregation
failure points when a single class dominates over 65%
of the data, and analyzing convergence trends over 50
communication rounds using six evaluation metrics
covering both discriminative and probabilistic
performance.

However, this study has several limitations that
warrant careful consideration. First, the experiments
were conducted using only three clients to simulate
inter-institutional heterogeneity in a controlled and
computationally feasible manner. This minimal
number of clients effectively highlights the impact of
extreme non-IID conditions (Dirichlet 0=0.1) on
algorithmic robustness, as evidenced by the complete
failure of global aggregation in severely imbalanced
scenarios such as DermaMNIST. However, such a
limited client count does not fully represent large-scale
federated learning deployments in real-world clinical
settings, where dozens to hundreds of healthcare
institutions may participate.

Increasing the number of clients is expected to
influence the findings in several ways. In non-IID
settings, a larger number of clients typically leads to
more stable global aggregation due to the law of large
numbers, which enables better averaging of local
updates and reduces the dominance of any single
highly divergent client. This can mitigate client drift
and improve overall convergence speed and stability,
particularly for algorithms like FedProx that already
incorporate proximal regularization to constrain local
divergence. Conversely, extreme heterogeneity across
more clients could amplify communication overhead
and require more robust handling of statistical and
system heterogeneity, potentially exposing additional
challenges in probability calibration (log-loss) if
minority class signals remain diluted. Recent literature
on federated learning in medical imaging supports this
observation: studies simulating scalability with
varying client counts (e.g., 3—10 or more on chest X-
ray or histopathology datasets) demonstrate that
performance often improves with scale under moderate
non-IID conditions, while severe label skew continues
to challenge standard FedAvg but benefits more from
proximal or personalized variants [49], [50].

Second, the proximal coefficient p in FedProx was
fixed to a single value throughout the experiments.
The primary objective of this study is a rigorous
comparative evaluation of multiple federated learning
algorithms (FedAvg, FedProx, FedSVRG, and FedAtt)
under extreme Dirichlet non-IID conditions in medical
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imaging datasets. To ensure a fair and unbiased
comparison across all algorithms, we deliberately used
a fixed p (as is common in comparative FL studies).
Performing a detailed sensitivity analysis alone would
extend the scope significantly and introduce unfairness
in the algorithmic comparison, as the other methods
(e.g., FedSVRG's control variants or FedAtt's attention
mechanism) also have tunable hyperparameters that
were not explored for the same reason of maintaining
comparability.

Third, the local model architecture employed a
relatively simple and shallow Convolutional Neural
Network (CNN) with only two convolutional layers,
selected for its computational efficiency and to
maintain focus on algorithmic comparison rather than
backbone optimization. While this design suffices for
initial benchmarking on small-scale MedMNIST
images (28x28), deeper and more powerful backbones
such as ResNet (e.g., ResNet-18/50) or Vision
Transformers (ViT) could potentially enhance feature
extraction capabilities, leading to improved robustness
against non-IID heterogeneity, better handling of
complex patterns in multiclass tasks (e.g.,
DermaMNIST and BloodMNIST), and superior
convergence or probability calibration in federated
settings. Recent studies in medical imaging indicate
that ResNet variants often achieve higher accuracy in
non-IID federated scenarios (e.g., COVID-19 CXR
classification with ResNet50/101), while ViTs excel in
capturing global dependencies but may require larger
data or pre-training to outperform CNNs on small
datasets like MedMNIST [51], [52], [53], [54].
However, deeper models also introduce risks such as
increased overfitting on limited per-client data or
higher communication costs.

Fourth, while the motivation for privacy preservation
through Federated Learning is emphasized in the
introduction (no raw data exchange, compliance with
GDPR/HIPAA), this study does not implement any
formal privacy-enhancing mechanisms beyond the
inherent data locality of FL. Mechanisms such as
differential privacy (e.g., via DP-SGD or noise
addition in local updates) and secure aggregation (e.g.,
SecAgg protocol for encrypted summation of model
updates) are critical for real-world clinical deployment
to protect against model inversion attacks, membership
inference, and unintended leakage of sensitive patient
information. The absence of these mechanisms is due
to the current focus on comparative algorithmic
performance under non-IID conditions; incorporating
them would require additional computational overhead
and parameter tuning, which is outside the primary
scope of this benchmark study.

To address these limitations, we recommend the
following for future work: conducting dedicated
scalability experiments by increasing the number of
clients to 5-20 (or higher) while maintaining the same
Dirichlet a=0.1 partitioning on MedMNIST datasets or

transitioning to real multi-institutional medical
imaging data; performing hyperparameter sensitivity
analyses, including tuning of p in FedProx (e.g., across
a range of values such as 0.01-10.0) alongside similar
tuning for other algorithms; integrating personalized
federated learning approaches to address extreme
imbalance cases; developing class-aware or minority-
focused attention-based aggregation mechanisms;
evaluating deeper backbones such as ResNet-18/50 or
lightweight ViT variants (e.g., DeiT-Small) under the
same non-IID conditions to quantify performance
gains in robustness and calibration; incorporating
formal privacy mechanisms such as differential
privacy (DP-SGD, DP-FedAvg) and secure
aggregation (SecAgg) to strengthen protection against
privacy attacks and better align the framework with
clinical practice requirements (e.g., full GDPR/HIPAA
compliance); and testing these extensions with real-
world medical imaging data from actual institutions.
Such rigorous extensions would further quantify the
robustness, scalability, and practical deployability of
FedProx in large-scale, heterogeneous, and privacy-
sensitive clinical environments.

4. Conclusion

Overall, this study provides a comprehensive
evaluation of the resilience of four major federated
learning algorithms under extreme heterogeneity
conditions of medical image data, simulated through
non-I1ID partitioning based on Dirichlet distribution
(0=0.1), and demonstrates that FedProx consistently
emerges as the most robust method in terms of
convergence speed, training stability, and probability
calibration quality, both in binary classification
scenarios (PneumoniaMNIST) and multiclass tasks
with moderate imbalance (BloodMNIST). In contrast,
FedAvg, FedSVRG, and FedAtt experience significant
performance degradation under extreme imbalance
conditions (DermaMNIST), where the global
aggregation process dilutes diagnostic signals of
minority classes, rendering local training more
effective than federated collaboration in such cases.
The main scientific contributions of this study include
the introduction of a novel benchmark integrating
Dirichlet-based  non-IID  simulation,  per-client
stratified 5-fold cross-validation, and probabilistic
metrics such as log-loss; the identification of critical
global aggregation failure points when a single class
dominates over 65% of the data; and in-depth analysis
of convergence trends over 50 communication rounds
across six evaluation metrics. These findings imply
that FedProx offers a scalable, privacy-preserving
framework for cross-institutional medical image
diagnostics, with potential applications in real-world
clinical settings to enhance diagnostic accuracy for
rare diseases while mitigating data privacy risks.
Speculatively, this robustness could extend to broader
healthcare Al systems, though further validation is
needed. For future research, we advise exploring
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scalability with more clients, hyperparameter tuning,

personalized

FL mechanisms, deeper model

backbones, and formal privacy integrations to align
more closely with clinical deployment requirements.
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