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Abstract  

Machine learning has achieved diagnostic performance comparable to clinical experts on medical imaging, yet centralized 

training paradigms necessitate patient data aggregation, risking violations of privacy regulations such as GDPR and 

HIPAA. In 2023, 1,853 healthcare data breaches were reported in the United States, compromising over 133 million medical 

records, rendering raw inter-institutional data exchange increasingly unsustainable. Federated Learning (FL) offers a viable 

solution by enabling collaborative model training without data transfer. However, prior studies predominantly evaluate 

single algorithms and often neglect non-IID Dirichlet-distributed conditions and probabilistic calibration metrics like log-

loss. This study rigorously compares FedAvg, FedProx, FedSVRG, and FedAtt across three MedMNIST v2 datasets—

PneumoniaMNIST (binary), DermaMNIST, and BloodMNIST (multi-class)—using three clients under non-IID Dirichlet 

partitioning (α=0.1) over 50 communication rounds. FedProx demonstrates the most consistent performance and stability, 

achieving accuracy of 0.9521 and log-loss of 0.1850 on PneumoniaMNIST; 0.8595 and 0.4066 on BloodMNIST; and 0.5747 

and 1.5996 on DermaMNIST. It also exhibits fastest convergence and superior probability calibration. Thus, FedProx’s 

proximal regularization enhances FL robustness against extreme clinical heterogeneity, establishing it as a scalable, 

privacy-preserving framework for cross-institutional medical image diagnostics. 

Keywords: Aggregation; healthcare; federated learning; data transfer; privacy-preserving 

1. Introduction 

Machine learning has achieved diagnostic performance 

on par with clinical experts across diverse medical 

image analysis tasks, including thoracic abnormality 

detection and skin lesion classification, as synthesized 

in recent comprehensive reviews [1], [2], [3], [4]. 

However, centralized training paradigms necessitate 

cross-institutional aggregation of patient data, 

potentially violating stringent privacy regulations such 

as the European Union’s General Data Protection 

Regulation (GDPR) and the United States’ Health 

Insurance Portability and Accountability Act (HIPAA) 

[5], [6], [7]. In 2023 alone, 1,853 healthcare data 

breaches were reported in the United States, 

compromising over 133 million patient records, 

underscoring that direct exchange of raw data is no 

longer sustainable in modern healthcare ecosystems 

[8], [9], [10], [11]. 

Federated Learning (FL) offers an alternative 

paradigm by enabling collaborative model training 

without relocating sensitive data from its origin [12], 

[13], [14]. Each medical institution—acting as a 

client—trains a local model on its internal dataset, 

transmitting only parameter updates to a central server 

for global aggregation. In the medical domain, inter-

institutional data heterogeneity is not a simulated 

artifact but a true reflection of clinical specialization: 

dermatology oncology centers predominantly manage 

melanoma cases, whereas general hospitals handle 

markedly lower proportions [15], [16]. Such variation 

induces highly non-independent and identically 

distributed (non-IID) data distributions, severely 

degrading the efficacy of conventional FL algorithms 

[17]. Empirical studies demonstrate that Federated 

Averaging (FedAvg)—the foundational method—

suffers accuracy degradation of up to 25.7% under 

extreme non-IID conditions compared to IID settings 

[18]. This decline is exacerbated by extreme class 

imbalance, where minority classes—such as rare 

diseases—may constitute less than 1% of the global 

data, rendering their diagnostic signals vulnerable to 

suppression during aggregation [19], [20], [21]. This 

phenomenon not only impairs generalization but also 

amplifies predictive bias, particularly in clinically 

critical classes [22]. 
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Figure 1. Research Flow 

Although recent literature has explored FL 

applications in medicine, most studies evaluate a 

single algorithm without systematic comparison, 

neglect the Dirichlet distribution as a standard for 

simulating non-IID heterogeneity, and omit 

comprehensive evaluation metrics, including log-loss 

for probability calibration: Author et al. tested only 

FedEst-NIID on tabular MIMIC-IV data without 

images, Dirichlet partitioning, or log-loss [23]; Author 

et al. evaluated FedAvg+DP on a single COVID-19 

cohort with departmental heterogeneity, excluding log-

loss and probabilistic simulation [24]; Author et al. 

used FedAvg as a proof-of-concept on skin lesions 

across three sites with real clinical non-IID data [25]; 

and Author et al. implemented SCAFFOLD on a 

single hematology dataset with fixed labels, with 

neither algorithm comparison nor log-loss [26]. The 

collective absence of multi-algorithm comparative 

evaluation, representative Dirichlet-based non-IID 

simulation, and calibration metrics such as log-loss 

constitute a significant methodological gap, limiting 

deep understanding of FL robustness and reliability in 

heterogeneous clinical environments. 

To address these challenges, several advanced FL 

variants have been proposed with adaptive 

mechanisms. Federated Proximal (FedProx) introduces 

proximal regularization to constrain local model 

divergence from the global model [27], [28]; Federated 

Stochastic Variance Reduced Gradient (FedSVRG) 

leverages variance control to mitigate gradient 

oscillation in heterogeneous data [29]; whereas 

Federated Attentive Aggregation (FedAtt) employs 

cosine similarity-based attention to prioritize 

informative updates [30]. Despite their theoretical 

promise, systematic comparative evaluations—

particularly on medical imaging datasets with 

Dirichlet-based non-IID partitioning that 

probabilistically replicates inter-institutional 

variation—remain scarce. Moreover, comprehensive 

evaluation metrics—including accuracy, precision, 

recall, F1-score, ROC-AUC, and log-loss (specifically 

assessing probability calibration yet rarely utilized in 

medical FL literature)—have not been thoroughly 

explored to reveal convergence dynamics and long-

term stability. 

This study aims to bridge these methodological gaps 

by rigorously evaluating the performance of FedAvg, 

FedProx, FedSVRG, and FedAtt on three medical 

imaging datasets from the MedMNIST v2 collection 

[15]: PneumoniaMNIST (5,856 samples, binary 

classification), DermaMNIST (10,015 samples, 7 

classes), and BloodMNIST (17,092 samples, 8 

classes). Data are partitioned across three 

heterogeneous clients using a low-concentration 

Dirichlet distribution, yielding statistically significant 

inter-client class distribution disparities. This approach 

enables in-depth analysis of algorithmic resilience to 

both statistical and system heterogeneity while 

providing critical insights for developing reliable FL 

systems in real-world clinical settings [31]. 

2. Research Methods 

Figure 1 illustrates the overall research workflow. The 

dataset is initially loaded and partitioned into three 

heterogeneous clients using a Dirichlet distribution to 

simulate non-IID conditions. Each client subsequently 

performs pixel intensity normalization. Next, 5-fold 

cross-validation based on StratifiedKFold is applied to 

each client. In each fold, every client trains a local 

CNN model and then transmits the local model 

weights to the center [32]. The center performs global 

aggregation separately to produce four global models: 

Federated Averaging (FedAvg), Federated Proximal 

(FedProx), Federated Stochastic Variance Reduced 

Gradient (FedSVRG), and Federated Attentive 

Aggregation (FedAtt). Evaluation is conducted on the 

local models using each client’s test set, as well as on 

the global models using all three client test sets, with 

computation of accuracy, precision, recall, F1-score, 

ROC-AUC, and log-loss. The processes of local 

training, weight transmission, aggregation, and 

evaluation are repeated for 50 communication rounds. 
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Table 1. Medical Image Dataset Summary 

Dataset Name Classification Type Total Samples Class Distribution (All Data) 

PneumoniaMNIST Binary 5,856 Class 0 (Normal): 1,583 (27.03%) 

Class 1 (Pneumonia): 4,273 (72.97%) 

DermaMNIST Multiclass 10,015 Class 0 (akiec): 327 (3.27%) 
Class 1 (bcc): 514 (5.13%) 

Class 2 (bkl): 1,099 (10.97%) 

Class 3 (df): 115 (1.15%) 
Class 4 (mel): 1,113 (11.11%) 

Class 5 (nv): 6,705 (66.95%) 

Class 6 (vasc): 142 (1.42%) 

BloodMNIST Multiclass 17,092 Class 0 (basophil): 1,218 (7.13%) 

Class 1 (eosinophil): 3,117 (18.24%) 

Class 2 (erythroblast): 1,551 (9.07%) 
Class 3 (immature granulocytes): 2,895 (16.94%) 

Class 4 (lymphocyte): 1,214 (7.10%) 

Class 5 (monocyte): 1,420 (8.31%) 
Class 6 (neutrophil): 3,329 (19.48%) 

Class 7 (platelet): 2,348 (13.74%) 

 

 
Figure 2. Example Images per Class for Datasets PneumoniaMNIST, DermaMNIST, and BloodMNIST 

 

2.1. Dataset 

This study utilizes three datasets, namely 

PneumoniaMNIST, DermaMNIST, and BloodMNIST, 

which encompass variations in classification types, 

including both binary and multiclass tasks [33]. These 

datasets were selected to represent diverse data 

characteristics within the context of evaluating 

federated learning algorithms. A comprehensive 

summary of each dataset is presented in Table 1, while 

Figure 2 displays example samples from each class 

across the respective datasets. 

The datasets are subsequently partitioned into three 

heterogeneous clients to simulate non-IID conditions 

commonly encountered in healthcare federated 

learning applications. The partitioning is performed 

using a Dirichlet distribution to probabilistically 

control class proportions across clients, thereby 

reflecting real-world variations in patient populations 

across different medical institutions [31]. 

The class proportion on client 𝑘 for class 𝑐 is 

determined via a random vector drawn from the 

Dirichlet distribution, as shown in Equation 1. 

π𝑐⃗⃗⃗⃗ ∼ Dirichlet(α ⋅ 1𝐾
⃗⃗ ⃗⃗  ), 𝑐 ∈ {0,1}, 𝑘 =  1,2,3         (1) 

Where 𝛼 is the concentration parameter that controls 

the degree of heterogeneity (a smaller 𝛼 yields a more 

imbalanced distribution), and 1𝐾
⃗⃗ ⃗⃗   is a one-vector of 

dimension 𝐾 =  3. Equation 1 produces a proportion 

𝜋𝑐⃗⃗⃗⃗ = (𝜋𝑐,1, 𝜋𝑐,2, 𝜋𝑐,3), ∑ 𝜋𝑐,𝑘
3
𝑘=1 = 1.  

The parameter 𝛼 in the Dirichlet distribution was set to 

0.1 to increase data imbalance across clients. The 

partitioning ensures each sample is assigned to one 

client without overlapping. This configuration 

preserves the integrity of the non-IID simulation, 

common in distributed healthcare systems. The design 

supports evaluating method robustness against data 

diversity in real-world institutions. This setting enables 

realistic evaluation and shows its generalization across 

clients. The distribution of the datasets across the three 

clients is presented in Tables 2–4, while the results of 

the Kolmogorov-Smirnov test between clients are 

shown in Table 5. 

Based on Tables 2–5, the class distribution and mean 

intensity across clients differ significantly in all 

datasets (p < 0.05). The Chi-square test was employed 

to assess whether the class distribution across clients 

differs statistically, while the Kolmogorov-Smirnov 

(KS) test was used to compare the distribution of mean 

pixel intensity across clients [34], [35]. The significant 

results from both tests confirm that each dataset is 

genuinely heterogeneous, making it suitable for 

simulating federated learning scenarios, where models 

are frequently confronted with imbalanced and 

heterogeneous data.  

2.2. Federated Learning (FL) 

Federated Learning (FL) is a distributed machine 

learning paradigm that enables collaborative model 

training across multiple clients without exchanging 

raw data, preserving privacy and reducing 
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Table 2. PneumoniaMNIST 

Total Samples Client 1 Class Distribution Client 2 Class Distribution Client 3 Class Distribution Chi-square p-value 

5,360 Class 0 (Normal): 1,043 

(39.4%) 
Class 1 (Pneumonia): 1,602 

(60.6%) 

Class 0 (Normal): 75 

(4.0%) 
Class 1 (Pneumonia): 1,815 

(96.0%) 

Class 0 (Normal): 465 

(56.4%) 
Class 1 (Pneumonia): 360 

(43.6%) 

1,003.47 1.25e-

218 

 

Table 3. DermaMNIST 

Total Samples Client 1 Class Distribution Client 2 Class Distribution Client 3 Class Distribution Chi-square p-value 

3,569 Class 0 (akiec): 183 (5.1%) 

Class 1 (bcc): 20 (0.6%) 

Class 2 (bkl): 550 (15.4%) 
Class 3 (df): 21 (0.6%) 

Class 4 (mel): 28 (0.8%) 

Class 5 (nv): 2,717 (76.1%) 
Class 6 (vasc): 50 (1.4%) 

Class 0 (akiec): 84 (5.2%) 

Class 1 (bcc): 35 (2.2%) 

Class 2 (bkl): 319 (19.8%) 
Class 3 (df): 39 (2.4%) 

Class 4 (mel): 1,065 

(65.9%) 
Class 5 (nv): 35 (2.2%) 

Class 6 (vasc): 38 (2.4%) 

Class 0 (akiec): 60 (1.2%) 

Class 1 (bcc): 459 (9.5%) 

Class 2 (bkl): 230 (4.8%) 
Class 3 (df): 55 (1.1%) 

Class 4 (mel): 20 (0.4%) 

Class 5 (nv): 3,953 
(81.8%) 

Class 6 (vasc): 54 (1.1%) 

7,288.59 0.00e+00 

 

Table 4. BloodMNIST 

Total Samples Client 1 Class Distribution Client 2 Class Distribution Client 3 Class Distribution Chi-square p-value 

8,289 Class 0 (basophil): 353 

(4.3%) 

Class 1 (eosinophil): 141 
(1.7%) 

Class 2 (erythroblast): 863 

(10.4%) 
Class 3 (immature 

granulocytes): 339 (4.1%) 

Class 4 (lymphocyte): 1,134 
(13.7%) 

Class 5 (monocyte): 821 

(9.9%) 
Class 6 (neutrophil): 2,370 

(28.6%) 

Class 7 (platelet): 2,268 
(27.4%) 

Class 0 (basophil): 258 

(5.0%) 

Class 1 (eosinophil): 2,926 
(56.4%) 

Class 2 (erythroblast): 638 

(12.3%) 
Class 3 (immature 

granulocytes): 362 (7.0%) 

Class 4 (lymphocyte): 30 
(0.6%) 

Class 5 (monocyte): 549 

(10.6%) 
Class 6 (neutrophil): 394 

(7.6%) 

Class 7 (platelet): 30 
(0.6%) 

Class 0 (basophil): 607 

(16.8%) 

Class 1 (eosinophil): 50 
(1.4%) 

Class 2 (erythroblast): 50 

(1.4%) 
Class 3 (immature 

granulocytes): 2,194 

(60.7%) 
Class 4 (lymphocyte): 50 

(1.4%) 

Class 5 (monocyte): 50 
(1.4%) 

Class 6 (neutrophil): 565 

(15.6%) 
Class 7 (platelet): 50 (1.4%) 

16,242.23 0.00e+00 

 

Table 5. Kolmogorov-Smirnov Test Results (Average Intensity Distribution) 

Dataset Scenario p-value 

PneumoniaMNIST client_1 vs client_2 4.68e-12 

PneumoniaMNIST client_1 vs client_3 2.03e-02 

PneumoniaMNIST client_2 vs client_3 9.10e-14 

DermaMNIST client_1 vs client_2 5.65e-24 

DermaMNIST client_1 vs client_3 1.22e-02 

DermaMNIST client_2 vs client_3 7.01e-33 

BloodMNIST client_1 vs client_2 1.15e-320 

BloodMNIST client_1 vs client_3 9.01e-321 

BloodMNIST client_2 vs client_3 2.35e-31 

 

communication costs [36]. Each client independently 

trains a local model using its private dataset and 

periodically sends the model parameters (weights) to a 

central server for global aggregation [37]. The server 

then updates and redistributes the global model to all 

clients, allowing continuous improvement through 

multiple communication rounds [38]. This iterative 

process ensures that knowledge from diverse data 

sources is integrated without compromising data 

confidentiality. In this study, FL addresses data 

heterogeneity and privacy concerns across medical 

institutions. The overall workflow of FL implemented 

in this research is illustrated in Figure 3, providing a 

clearer overview of the collaborative training process. 

This framework also allows evaluating model 

performance under non-IID data distributions and 

highlights robustness when deployed across diverse 

clients. 

2.3. Federated Averaging (FedAvg) 

Federated Averaging (FedAvg) is the foundational 

algorithm in FL that performs aggregation of local 

model parameters via a weighted average based on the 

proportion of each client's data size relative to the total 

data [39]. At communication round 𝑡, the server 

initializes the global model 𝑤(𝑡), after which each 
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Figure 3. Workflow of Federated Learning 

client 𝑘 performs local updates over several epochs to 

produce 𝑤𝑘
(𝑡+1)

. Global aggregation is performed 

according to Equation 2. 

𝑤(𝑡+1) = ∑
𝑛𝑘

𝑛

𝐾
𝑘=1 𝑤𝑘

(𝑡+1)
              (2) 

Where 𝑛𝑘 is the number of samples at client 𝑘, 𝑛 =
∑ 𝑛𝑘

𝐾
𝑘=1  is the total number of samples, and 𝐾 is the 

number of clients. Equation 2 ensures that each client's 

contribution to the global model is proportional to its 

dataset size, thereby preventing dominance by clients 

with large datasets and maintaining overall data 

representation balance. 

2.4. Federated Proximal (FedProx) 

FedProx is an enhancement over FedAvg that 

incorporates a proximal term to address system and 

data heterogeneity [27]. The algorithm constrains the 

deviation of local models from the global model 

during local training. At client 𝑘, the local objective 

function is modified to Equation 3. 

min
𝑤

𝑓𝑘 (𝑤) +
μ

2
|𝑤 − 𝑤(𝑡)|2             (3) 

Where 𝑓𝑘(𝑤) is the local loss function, 𝑤(𝑡) is the 

global model at round 𝑡, and μ is the proximal 

regularization coefficient. Equation 3 adds a quadratic 

penalty on the distance between local and global 

parameters. After local optimization, aggregation 

follows the same weighted averaging as in Equation 2. 

2.5. Federated Stochastic Variance Reduced Gradient 

(FedSVRG) 

FedSVRG, in this implementation based on the 

SCAFFOLD framework, uses control variates to 

reduce gradient variance and accelerate convergence 

on non-IID data [40]. The algorithm maintains two 

control variables: 𝑐 (global) and 𝑐𝑘 (local per client). 

The local gradient update at client 𝑘 is modified 

according to Equation 4. 

𝑔𝑘̃ = ∇𝑓𝑘(𝑤𝑘) − 𝑐𝑘 + 𝑐              (4) 

Where ∇𝑓𝑘(𝑤𝑘) is the local stochastic gradient. 

Equation 4 corrects the local gradient by subtracting 

the client-specific variance component (𝑐𝑘) and adding 

the global average variance (𝑐). After local training, 

control variations are updated based on parameter 

differences, Δ𝑤𝑘 = 𝑤𝑘 − 𝑤(𝑡), then 𝑐 ← 𝑐 +
1

𝐾
∑Δ𝑤𝑘 

and 𝑐𝑘 ← 𝑐. 

2.6. Federated Attentive Aggregation (FedAtt) 

FedAtt introduces an attention mechanism to assign 

adaptive aggregation weights based on cosine 

similarity between local and global model parameters 

[30]. At each round, the server computes a similarity 

score 𝑠𝑘 for each client 𝑘 using Equation 5. 

𝑠𝑘 = ∑ cosine_similarity(𝑤𝑙
(𝑡), 𝑤𝑘,𝑙

(𝑡+1)
)𝑙             (5) 

Where index 𝑙 iterates over all parameter layers. 

Equation 5 measures the extent to which client 𝑘's 

local update aligns with the current global model. 

Then, attention weights α𝑘 are computed via softmax 

according to Equation 6. 

α𝑘 =
exp(𝑠𝑘)

∑ exp(𝑠𝑗)𝑗
               (6) 

and global aggregation is performed according to 

Equation (7). 

𝑤(𝑡+1) = ∑ α𝑘𝑤𝑘
(𝑡+1)𝐾

𝑘=1               (7) 

Equation 6 ensures that ∑α𝑘 = 1, distributing weights 

probabilistically. Equation 7 enables the server to 

prioritize clients with more informative or consistent 

updates. 

2.7. Local Model Architecture: Convolutional Neural 

Network (CNN) 

The local model employed by each client is a 

Convolutional Neural Network (CNN). The 

architecture consists of two convolutional layers with 

ReLU activation functions, one max pooling layer for 

spatial dimension reduction, dropout for 

regularization, and two fully connected layers at the 

end [41]. This design enables hierarchical feature 

extraction from image data. For binary classification 

tasks, the local model architecture is summarized in 

Table 6.  
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Table 6. CNN Architecture for Binary Classification 

Layer Configuration Output Shape Parameter 

Input Citra grayscale / RGB 1 × H × W / 3 
× H × W 

– 

conv1 Conv2d(1 → 16, kernel 3×3, 

stride 1, padding 1) 

16 × H × W 160 

ReLU – 16 × H × W 0 

conv2 Conv2d(16 → 32, kernel 3×3, 

stride 1, padding 1) 

32 × H × W 4.640 

ReLU – 32 × H × W 0 

pool MaxPool2d(kernel 2×2, stride 2) 32 × (H/2) × 

(W/2) 

0 

dropout Dropout(p=0.25) 32 × (H/2) × 

(W/2) 

0 

flatten – 1568 0 

fc1 Linear(1568 → 64) 64 100.416 

ReLU – 64 0 

fc2 Linear(64 → 1) 1 65 

 

For multiclass classification tasks, a similar 

architecture is used with adjustments to the input 

channels and final output dimension, as shown in 

Table 7. 

Table 7. CNN Architecture for Multiclass Classification 

Layer Configuration Output Shape Parameter 

Input Citra grayscale / RGB 
1 × H × W / 3 

× H × W 
– 

conv1 
Conv2d(3 → 16, kernel 3×3, 
stride 1, padding 1) 

16 × H × W 448 

ReLU – 16 × H × W 0 

conv2 
Conv2d(16 → 32, kernel 3×3, 
stride 1, padding 1) 

32 × H × W 4.640 

ReLU – 32 × H × W 0 

pool MaxPool2d(kernel 2×2, stride 2) 
32 × (H/2) × 
(W/2) 

0 

dropout Dropout(p=0.25) 
32 × (H/2) × 

(W/2) 
0 

flatten – 1568 0 

fc1 Linear(1568 → 64) 64 100.416 

ReLU – 64 0 

fc2 Linear(64 → 7) 7 455 

 

2.7. Experiments and Evaluation 

Experiments were conducted to evaluate the 

performance of four federated learning algorithms—

Federated Averaging (FedAvg), Federated Proximal 

(FedProx), Federated Stochastic Variance Reduced 

Gradient (FedSVRG), and Federated Attentive 

Aggregation (FedAtt). The entire process—from data 

loading, non-IID partitioning, initialization of 5-fold 

stratified cross-validation, local training, global 

aggregation, to metric evaluation structured in 

Algorithm 1. 

Algorithm 1. Experimental Flow of Federated Learning with 5-Fold  

Stratified Cross-Validation 

Input: Global dataset D, number of clients K, Dirichlet parameter α, 

number of communication rounds T 

Output: Average local and global performance metrics for each 
algorithm 

Steps: 

1. Load dataset D.   

    Normalize pixel intensities of each sample to the range [0, 1]. 
 

2. Partition dataset D into K non-IID subsets using the Dirichlet(α)  

    distribution.   
    Each class is allocated to clients proportionally based on a random  

    vector sampled from the Dirichlet distribution. 

 
3. For each client k = 1, ..., K:   

       Apply StratifiedKFold (5-fold) on subset D_k.   

       Generate 5 pairs of datasets (train_data_i^k, test_data_i^k), for i  
        = 1, ..., 5. 

 

4. Initialize the global model w^(0) for four algorithms:   

       FedAvg, FedProx, FedSVRG, and FedAtt using a CNN  

       architecture.   

       Initialize control variates c^(0) and c_k^(0) = 0 (for FedSVRG  
       only). 

 

5. For each communication round t = 1 to T:   
       For each fold i = 1 to 5: 

           Local Training Phase:   
               For each client k = 1, ..., K:   

                   Copy global model: w_k^(t) = w^(t−1).   

                   Perform local updates using the loss function:   
                       - CrossEntropyLoss (for multi-class) or   

                       - BCEWithLogitsLoss (for binary).   

                   Add a proximal term to the objective function (FedProx  
                   only).   

                   Apply gradient correction with control variates  

                   (FedSVRG only). 

 

           Global Aggregation Phase (performed separately for each  

           algorithm):   
               FedAvg: w^(t) = Σ_(k=1)^K (n_k / n) * w_k^(t)   

               FedProx: w^(t) = Σ_(k=1)^K (n_k / n) * w_k^(t) after local  

               optimization with the proximal term   
               FedSVRG: Update c and c_k based on Δw_k, then w^(t) =  

               (1 / K) Σ w_k^(t)   

               FedAtt: Compute attention scores s_k, normalize via  
               softmax to obtain α_k, then w^(t) = Σ α_k * w_k^(t) 

 

           Evaluation Phase: 
               Local model evaluation:   

                   For each client k = 1, ..., K:   

                       Evaluate w_k^(t) on test_data_i^k → metric_k.   
                   Average local metric = (1 / K) Σ metric_k. 

 

               Global model evaluation:   
                   For each client k = 1, ..., K:   

                       Evaluate w_alg^(t) on test_data_i^k → metric^k.   

                   Average global metric = (1 / K) Σ metric^k. 
 

               Save all metrics for each round and each fold. 

 
6. Compute the final average of all metrics over T rounds and 5  

    folds for each algorithm. 

 
7. Return the average local and global performance for FedAvg,  
    FedProx, FedSVRG, and FedAtt. 
 

Performance evaluation was carried out using six 

classification metrics: accuracy, precision, recall, F1-

score, ROC-AUC, and log-loss [42]. Each metric was 

computed based on predictions from both local and 

global models on test data. The definitions and 

formulations of each metric are presented sequentially. 
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The first metric is accuracy, which measures the 

proportion of correct predictions relative to the total 

number of samples, given by Equation 8. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (8) 

Where 𝑇𝑃 is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is 

false positive, and 𝐹𝑁 is false negative. 

The second metric is precision, which measures the 

proportion of positive predictions that are positive, 

defined in Equation 9. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (9) 

Equation 9 is critical in applications where false 

positives carry high consequences, such as disease 

detection. 

The third metric is recall (or sensitivity), which 

measures the proportion of actual positive cases 

successfully detected, given by Equation 10. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (10) 

Equation 10 emphasizes the model's ability to identify 

all positive instances, which is crucial when false 

negatives are costly. 

The fourth metric is the F1-score, the harmonic mean 

of precision and recall, formulated in Equation 11. 

F1-score = 2 ×
Precision×Recall

Precision+Recall
           (11) 

Equation 11 provides a balanced measure between 

precision and recall, making it suitable as a single 

metric for imbalanced data. 

The fifth metric is ROC-AUC (Area Under the 

Receiver Operating Characteristic Curve), which 

assesses the model's ability to distinguish between 

positive and negative classes across various thresholds, 

computed as the integral of the ROC curve. An AUC 

of 1 indicates perfect separation, while AUC = 0.5 

corresponds to random guessing. 

The sixth metric is log-loss (or cross-entropy loss), 

which evaluates the quality of predicted probabilities. 

For binary classification, it is defined in Equation 12. 

Log-loss = −
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖̂) + (1 − 𝑦𝑖) log(1 −𝑁

𝑖=1

𝑝𝑖̂)]              (12) 

For the multiclass case, log-loss is given by Equation 

13. 

Log-loss = −
1

𝑁
∑ ∑ 𝑦𝑖,𝑐

𝐶
𝑐=1 log(𝑝𝑖,𝑐̂)

𝑁
𝑖=1           (13) 

Where 𝑦𝑖  is the true label, 𝑝𝑖̂ is the predicted 

probability, 𝑁 is the number of samples, and 𝐶 is the 

number of classes. Equations 12 and 13 more heavily 

penalize confident incorrect predictions, thus 

encouraging well-calibrated probabilities. 

3. Results and Discussions 

This study evaluates the performance of four federated 

learning algorithms—FedAvg, FedProx, FedSVRG, 

and FedAtt—alongside local client models on three 

medical imaging datasets partitioned in a non-IID 

manner using a Dirichlet distribution with a low 

concentration parameter to simulate real-world 

heterogeneity across healthcare institutions. The 

experimental protocol employs 5-fold stratified cross-

validation per client and conducts training over 50 

communication rounds, with evaluation metrics 

including accuracy, precision, recall, F1-score, ROC-

AUC, and log-loss, computed as averages across all 

folds and clients. Table 8 presents the mean 

performance at three critical points—Round 1 

(initialization), Round 25 (mid-convergence), and 

Round 50 (final stabilization)—for the 

PneumoniaMNIST, DermaMNIST, and BloodMNIST 

datasets, while Figure 4 illustrates the complete trends 

from Round 1 to Round 50 across all six metrics, 

providing a longitudinal view of convergence speed, 

stability, and response to data heterogeneity. 

On the PneumoniaMNIST dataset, a binary 

classification task with moderate imbalance, FedProx 

consistently demonstrates the best performance 

throughout the communication rounds. At Round 50, it 

achieves accuracy of 0.9521, precision of 0.9439, 

recall of 0.9763, F1-score of 0.9589, ROC-AUC of 

0.9852, and log-loss of 0.1850—significantly 

outperforming the local model (accuracy 0.7642) and 

FedAvg (accuracy 0.7097). A sharp improvement is 

observed by Round 25, with accuracy reaching 0.9470 

and log-loss dropping to 0.1521, indicating that the 

proximal term effectively constrains local model 

deviation from the global model, thereby accelerating 

convergence and enhancing generalization under non-

IID conditions. FedSVRG and FedAtt achieve nearly 

identical values at Round 50, with accuracy around 

0.9461, F1-score of 0.9525, and ROC-AUC near 

0.977, but log-loss increases from approximately 0.177 

at Round 25 to 0.2687, suggesting degradation in 

probability calibration in later stages. FedAvg 

maintains high recall above 0.995 from Round 1 but 

keeps precision below 0.700 through Round 50, 

reflecting a strong bias toward predicting the majority 

class. The local model exhibits fluctuations, peaking at 

accuracy 0.7836 at Round 25 before declining to 

0.7642 at Round 50, underscoring the limitations of 

isolated training due to constrained data size and 

diversity per client. 
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Table 8. Mean Performance (5-Fold) at Rounds 1, 25, and 50 Across All Datasets 

Dataset Model Round Accuracy Precision Recall F1-Score ROC-AUC Log-Loss 

PneumoniaMNIST Lokal 1 0,7462 0,5538 0,6594 0,5968 0,7509 0,4550 

  25 0,7836 0,6085 0,6323 0,6166 0,7538 0,4123 

  50 (Final Model) 0,7642 0,5828 0,6456 0,6068 0,7921 0,4267 

 FedAvg 1 0,6672 0,6672 1,0000 0,7804 0,7726 0,6541 

  25 0,6992 0,6903 0,9961 0,7968 0,7603 0,6189 

  50 (Final Model) 0,7097 0,6998 0,9955 0,8035 0,8367 0,6130 

 FedProx 1 0,7170 0,7018 0,9994 0,8071 0,9600 0,5623 

  25 0,9470 0,9322 0,9772 0,9531 0,9861 0,1521 

  50 (Final Model) 0,9521 0,9439 0,9763 0,9589 0,9852 0,1850 

 FedSVRG 1 0,6724 0,6703 0,9998 0,7828 0,8219 0,6523 

  25 0,9434 0,9339 0,9691 0,9500 0,9790 0,1774 

  50 (Final Model) 0,9461 0,9360 0,9716 0,9525 0,9772 0,2687 

 FedAtt 1 0,7482 0,8257 0,8511 0,8037 0,8576 0,5575 

  25 0,9438 0,9349 0,9687 0,9504 0,9790 0,1766 

  50 (Final Model) 0,9461 0,9360 0,9716 0,9525 0,9773 0,2687 

DermaMNIST Lokal 1 0,7444 0,1113 0,1425 0,1220 0,6814 0,8444 

  25 0,7455 0,1104 0,1445 0,1246 0,7308 0,7851 

  50 (Final Model) 0,7464 0,1066 0,1429 0,1219 0,7556 0,7892 

 FedAvg 1 0,5339 0,0763 0,1429 0,0861 0,6458 1,4891 

  25 0,5339 0,0763 0,1429 0,0861 0,6331 1,4996 

  50 (Final Model) 0,5339 0,0763 0,1429 0,0861 0,7061 1,4642 

 FedProx 1 0,5339 0,0763 0,1429 0,0861 0,7172 1,4723 

  25 0,5653 0,2460 0,2269 0,1790 0,8114 1,5342 

  50 (Final Model) 0,5747 0,2919 0,2652 0,2190 0,8178 1,5996 

 FedSVRG 1 0,5339 0,0763 0,1429 0,0861 0,5598 1,5901 

  25 0,5559 0,2594 0,2905 0,2194 0,7664 1,8269 

  50 (Final Model) 0,5438 0,2528 0,2700 0,2125 0,7397 2,4578 

 FedAtt 1 0,5339 0,0763 0,1429 0,0861 0,5462 1,6044 

  25 0,5557 0,2593 0,2957 0,2201 0,7662 1,8113 

  50 (Final Model) 0,5439 0,2532 0,2705 0,2133 0,7396 2,4540 

BloodMNIST Lokal 1 0,6853 0,2653 0,2862 0,2638 0,7564 0,9850 

  25 0,6518 0,2271 0,2605 0,2340 0,7150 1,0638 

  50 (Final Model) 0,6315 0,2114 0,2426 0,2140 0,7194 1,0999 

 FedAvg 1 0,1816 0,0530 0,1568 0,0640 0,7690 2,0899 

  25 0,1952 0,0555 0,1731 0,0727 0,7133 1,9878 

  50 (Final Model) 0,1831 0,0320 0,1439 0,0481 0,7319 1,9868 

 FedProx 1 0,3079 0,1921 0,3200 0,1944 0,8535 1,8511 

  25 0,8554 0,7511 0,8570 0,7764 0,9846 0,3938 

  50 (Final Model) 0,8595 0,7571 0,8619 0,7834 0,9848 0,4066 

 FedSVRG 1 0,1965 0,0646 0,1808 0,0771 0,7544 1,9529 

  25 0,7683 0,6446 0,7602 0,6681 0,9602 0,8231 

  50 (Final Model) 0,7568 0,6441 0,7501 0,6618 0,9534 1,0513 

 FedAtt 1 0,2756 0,0543 0,1643 0,0679 0,7488 1,8887 

  25 0,7688 0,6448 0,7595 0,6680 0,9602 0,8227 

  50 (Final Model) 0,7569 0,6434 0,7487 0,6607 0,9534 1,0509 
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(a) 

 
(b) 

 
(c) 

Figure 4. Average 5-Fold Performance Convergence Trends from Rounds 1 to 50 across All Datasets: (a) PneumoniaMNIST, (b) 

DermaMNIST, and (c) BloodMNIST 

The DermaMNIST dataset, involving multiclass 

classification with extreme imbalance, reveals global 

aggregation failure across nearly all federated learning 

algorithms. FedAvg, FedSVRG, and FedAtt remain 

stagnant at accuracy 0.5339 and F1-score 0.0861 from 

Round 1 to Round 50, equivalent to majority-class 

guessing with no meaningful learning of minority 

classes. FedProx shows gradual progress, improving to 

accuracy 0.5747 and F1-score 0.2190 by Round 50, 

yet these values remain far below clinically acceptable 
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performance, while log-loss stays high above 1.4642 

for FedAvg and exceeds 2.45 for FedSVRG and 

FedAtt in the final phase. Conversely, the local model 

maintains stable accuracy around 0.746 and improves 

ROC-AUC from 0.6814 at Round 1 to 0.7556 at 

Round 50, confirming that when one class dominates 

over 66% of global data and up to 81% on certain 

clients, local training outperforms federated 

collaboration, which dilutes rare class signals during 

aggregation. 

To mitigate the observed global aggregation failure 

under severe class imbalance, where minority class 

signals are diluted during standard weighted 

averaging, future extensions could incorporate 

advanced aggregation strategies such as class-wise or 

class-balanced aggregation (e.g., weighting 

contributions per class or using distribution-

discrepancy-based methods to prioritize minority 

classes during aggregation) [43], [44], [45]. 

Additionally, personalized federated learning 

approaches (e.g., FedPer, pFedMe, Ditto, or Per-

FedAvg) offer promising alternatives by allowing 

client-specific model adaptations, which decouple 

shared global representations from personalized heads 

to better preserve local class distributions and improve 

minority class performance in extreme non-IID 

scenarios like DermaMNIST [46], [47], [48]. These 

extensions will be explored in future work to enhance 

robustness in highly imbalanced medical imaging 

tasks. 

On the BloodMNIST dataset, an eight-class multiclass 

task with moderate imbalance, FedProx again 

dominates, achieving accuracy 0.8595, precision 

0.7571, recall 0.8619, F1-score 0.7834, ROC-AUC 

0.9848, and log-loss 0.4066 at Round 50, with peak 

performance reached by Round 25 (accuracy 0.8554, 

log-loss 0.3938). FedSVRG and FedAtt reach 

accuracy of 0.7568 and 0.7569, respectively, with F1-

scores around 0.661 at Round 50, but log-loss rises 

from approximately 0.823 at Round 25 to over 1.05, 

indicating probability calibration degradation over 

iterations. FedAvg experiences a drastic decline to 

accuracy 0.1831 and F1-score 0.0481 by Round 50, 

while the local model degrades from accuracy 0.6853 

at Round 1 to 0.6315 at Round 50, likely due to 

overfitting on highly limited and imbalanced per-client 

subsets. Figure 4 reveals clear convergence patterns: 

FedProx exhibits rapid and stable improvement across 

all metrics for PneumoniaMNIST and BloodMNIST, 

with consistent log-loss reduction, whereas FedSVRG 

and FedAtt show oscillations in precision and recall 

before plateauing, and all federated learning curves 

flatten at low levels for DermaMNIST while the local 

model sustains gradual ROC-AUC improvement. 

These findings conclude that FedProx is the most 

effective and robust federated learning algorithm for 

medical image classification under non-IID 

heterogeneity, particularly for binary and moderately 

imbalanced multiclass tasks, due to its ability to 

balance local contributions with global consistency via 

proximal regularization. In contrast, FedAvg, 

FedSVRG, and FedAtt fail completely under extreme 

imbalance conditions as seen in DermaMNIST. The 

main contributions of this study include providing a 

comprehensive benchmark using per-client 5-fold 

stratified cross-validation on non-IID partitioned 

MedMNIST datasets, identifying global aggregation 

failure points when a single class dominates over 65% 

of the data, and analyzing convergence trends over 50 

communication rounds using six evaluation metrics 

covering both discriminative and probabilistic 

performance. 

However, this study has several limitations that 

warrant careful consideration. First, the experiments 

were conducted using only three clients to simulate 

inter-institutional heterogeneity in a controlled and 

computationally feasible manner. This minimal 

number of clients effectively highlights the impact of 

extreme non-IID conditions (Dirichlet α=0.1) on 

algorithmic robustness, as evidenced by the complete 

failure of global aggregation in severely imbalanced 

scenarios such as DermaMNIST. However, such a 

limited client count does not fully represent large-scale 

federated learning deployments in real-world clinical 

settings, where dozens to hundreds of healthcare 

institutions may participate. 

Increasing the number of clients is expected to 

influence the findings in several ways. In non-IID 

settings, a larger number of clients typically leads to 

more stable global aggregation due to the law of large 

numbers, which enables better averaging of local 

updates and reduces the dominance of any single 

highly divergent client. This can mitigate client drift 

and improve overall convergence speed and stability, 

particularly for algorithms like FedProx that already 

incorporate proximal regularization to constrain local 

divergence. Conversely, extreme heterogeneity across 

more clients could amplify communication overhead 

and require more robust handling of statistical and 

system heterogeneity, potentially exposing additional 

challenges in probability calibration (log-loss) if 

minority class signals remain diluted. Recent literature 

on federated learning in medical imaging supports this 

observation: studies simulating scalability with 

varying client counts (e.g., 3–10 or more on chest X-

ray or histopathology datasets) demonstrate that 

performance often improves with scale under moderate 

non-IID conditions, while severe label skew continues 

to challenge standard FedAvg but benefits more from 

proximal or personalized variants [49], [50]. 

Second, the proximal coefficient μ in FedProx was 

fixed to a single value throughout the experiments. 

The primary objective of this study is a rigorous 

comparative evaluation of multiple federated learning 

algorithms (FedAvg, FedProx, FedSVRG, and FedAtt) 

under extreme Dirichlet non-IID conditions in medical 



Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi Vol. 5 No. 1 (2026) 

 

 Copyright © 2026 | Riyadi et al. | Licensee Universitas Islam Indonesia 

42 

imaging datasets. To ensure a fair and unbiased 

comparison across all algorithms, we deliberately used 

a fixed μ (as is common in comparative FL studies). 

Performing a detailed sensitivity analysis alone would 

extend the scope significantly and introduce unfairness 

in the algorithmic comparison, as the other methods 

(e.g., FedSVRG's control variants or FedAtt's attention 

mechanism) also have tunable hyperparameters that 

were not explored for the same reason of maintaining 

comparability. 

Third, the local model architecture employed a 

relatively simple and shallow Convolutional Neural 

Network (CNN) with only two convolutional layers, 

selected for its computational efficiency and to 

maintain focus on algorithmic comparison rather than 

backbone optimization. While this design suffices for 

initial benchmarking on small-scale MedMNIST 

images (28×28), deeper and more powerful backbones 

such as ResNet (e.g., ResNet-18/50) or Vision 

Transformers (ViT) could potentially enhance feature 

extraction capabilities, leading to improved robustness 

against non-IID heterogeneity, better handling of 

complex patterns in multiclass tasks (e.g., 

DermaMNIST and BloodMNIST), and superior 

convergence or probability calibration in federated 

settings. Recent studies in medical imaging indicate 

that ResNet variants often achieve higher accuracy in 

non-IID federated scenarios (e.g., COVID-19 CXR 

classification with ResNet50/101), while ViTs excel in 

capturing global dependencies but may require larger 

data or pre-training to outperform CNNs on small 

datasets like MedMNIST [51], [52], [53], [54]. 

However, deeper models also introduce risks such as 

increased overfitting on limited per-client data or 

higher communication costs. 

Fourth, while the motivation for privacy preservation 

through Federated Learning is emphasized in the 

introduction (no raw data exchange, compliance with 

GDPR/HIPAA), this study does not implement any 

formal privacy-enhancing mechanisms beyond the 

inherent data locality of FL. Mechanisms such as 

differential privacy (e.g., via DP-SGD or noise 

addition in local updates) and secure aggregation (e.g., 

SecAgg protocol for encrypted summation of model 

updates) are critical for real-world clinical deployment 

to protect against model inversion attacks, membership 

inference, and unintended leakage of sensitive patient 

information. The absence of these mechanisms is due 

to the current focus on comparative algorithmic 

performance under non-IID conditions; incorporating 

them would require additional computational overhead 

and parameter tuning, which is outside the primary 

scope of this benchmark study. 

To address these limitations, we recommend the 

following for future work: conducting dedicated 

scalability experiments by increasing the number of 

clients to 5–20 (or higher) while maintaining the same 

Dirichlet α=0.1 partitioning on MedMNIST datasets or 

transitioning to real multi-institutional medical 

imaging data; performing hyperparameter sensitivity 

analyses, including tuning of μ in FedProx (e.g., across 

a range of values such as 0.01–10.0) alongside similar 

tuning for other algorithms; integrating personalized 

federated learning approaches to address extreme 

imbalance cases; developing class-aware or minority-

focused attention-based aggregation mechanisms; 

evaluating deeper backbones such as ResNet-18/50 or 

lightweight ViT variants (e.g., DeiT-Small) under the 

same non-IID conditions to quantify performance 

gains in robustness and calibration; incorporating 

formal privacy mechanisms such as differential 

privacy (DP-SGD, DP-FedAvg) and secure 

aggregation (SecAgg) to strengthen protection against 

privacy attacks and better align the framework with 

clinical practice requirements (e.g., full GDPR/HIPAA 

compliance); and testing these extensions with real-

world medical imaging data from actual institutions. 

Such rigorous extensions would further quantify the 

robustness, scalability, and practical deployability of 

FedProx in large-scale, heterogeneous, and privacy-

sensitive clinical environments. 

4. Conclusion 

Overall, this study provides a comprehensive 

evaluation of the resilience of four major federated 

learning algorithms under extreme heterogeneity 

conditions of medical image data, simulated through 

non-IID partitioning based on Dirichlet distribution 

(α=0.1), and demonstrates that FedProx consistently 

emerges as the most robust method in terms of 

convergence speed, training stability, and probability 

calibration quality, both in binary classification 

scenarios (PneumoniaMNIST) and multiclass tasks 

with moderate imbalance (BloodMNIST). In contrast, 

FedAvg, FedSVRG, and FedAtt experience significant 

performance degradation under extreme imbalance 

conditions (DermaMNIST), where the global 

aggregation process dilutes diagnostic signals of 

minority classes, rendering local training more 

effective than federated collaboration in such cases. 

The main scientific contributions of this study include 

the introduction of a novel benchmark integrating 

Dirichlet-based non-IID simulation, per-client 

stratified 5-fold cross-validation, and probabilistic 

metrics such as log-loss; the identification of critical 

global aggregation failure points when a single class 

dominates over 65% of the data; and in-depth analysis 

of convergence trends over 50 communication rounds 

across six evaluation metrics. These findings imply 

that FedProx offers a scalable, privacy-preserving 

framework for cross-institutional medical image 

diagnostics, with potential applications in real-world 

clinical settings to enhance diagnostic accuracy for 

rare diseases while mitigating data privacy risks. 

Speculatively, this robustness could extend to broader 

healthcare AI systems, though further validation is 

needed. For future research, we advise exploring 
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scalability with more clients, hyperparameter tuning, 

personalized FL mechanisms, deeper model 

backbones, and formal privacy integrations to align 

more closely with clinical deployment requirements. 
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