Evaluasi kinerja pilar Jembatan Lemah Ireng II berdasarkan performance based seismic design

Farah Amrina^{1,*}, Muhammad Riyansyah², Aris Aryanto³, dan Erwin Lim⁴

1,2,3,4Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, Bandung, Indonesia

Article Info

Article history: Received: May, 09 2023 Revised: May, 26 2023 Accepted: May, 29 2023 Available online: May, 31 2023

Keywords:

Performance-based design Performance level Non-linear time history analysis

Corresponding Author: Farah Amrina 25021023@mahasiswa.itb. ac.id

Abstract

Lemah Ireng II Bridge is a box-girder balanced cantilever bridge in Semarang Regency, Central Java, completed in 2014. The renewal of bridge loading regulations in 2016 consisted of SNI 1725:2016 for standard load and SNI 2833:2016 for earthquake load. Changes in earthquake loading regulations resulted in an increase in the ground surface spectra value in the short period (Sds, T=0.2 second) in the longitudinal direction by 38.47% and the transverse direction by 45.39% because of updating the earthquake map and the earthquake response modification factor. The Non-Linear Time History Analysis (NLTHA) method was used to determine the level of bridge performance against the applicable earthquake regulations based on the pier structure parameters. The NLTHA method uses seven deaggregated ground motion records to represent the ground motions at the bridge site. Parameter limits at the pier to determine the performance level of the bridge based on NCHRP Synthesis 440 and NCHRP Research Report 949. According to the results of the performance-based analysis, the bridge pier structure meets the Fully Operational performance level based on the parameters of drift, the compressive strain of concrete, and the tensile strain of steel reinforcement. At this level of performance, the structure suffers very little damage after an earthquake, so no repairs are needed, and the bridge can function immediately after the earthquake.

> Copyright © 2023 Universitas Islam Indonesia All rights reserved

Pendahuluan

Indonesia adalah negara dengan intensitas gempa yang cukup tinggi. Hal tersebut diakibatkan Indonesia berada pada pertemuan empat lempeng yaitu Lempeng Benua Eurasia, Lempeng Samudera Indo-Australia, Lempeng Samudera Pasifik, dan Lempeng Laut Filipina. Upaya meminimalisir dampak beban seismik atau gempa bumi adalah mendesain jembatan tahan terhadap gempa sesuai dengan level kinerja rencana. Perkembangan penelitian gempa yang telah menghasilkan pembaharuan dilakukan peraturan pembebanan jembatan pada tahun 1725:2016 tentang 2016 vaitu SNI Pembebanan untuk Jembatan dan SNI

2833:2016 tentang Perencanaan Jembatan terhadap Beban Gempa (Badan Standardisasi Nasional, 2016a, 2016b).

Jembatan Lemah Ireng II merupakan jembatan tipe *balance cantilever* atau integral tiga bentang dengan total panjang jembatan 300 meter ditunjukkan pada Gambar 1. Jembatan tipe integral merupakan jembatan tanpa sambungan antara superstruktur (girder) dan sub struktur (pier) memiliki kelebihan mengurangi biaya perawatan akibat siar muai dan tumpuan (Sigdel dkk., 2021). Jembatan tersebut selesai dibangun pada tahun 2014 terletak di Ruas Tol Semarang-Solo KM. 400, Kabupaten Semarang, Jawa Tengah. Jembatan tersebut direncanakan berdasarkan peraturan RSNI T-02-2005 tentang Standar Pembebanan untuk Jembatan (Badan Standardisasi Nasional, 2005), SNI 2833:2008 tentang Standar Perencanaan Ketahanan Gempa untuk Jembatan (Badan Standardisasi Nasional, 2008) dan Standar Spesifications for Highwaay Bridge 17th Edition (AASHTO, 2002).

Gambar 1. Jembatan Lemah Ireng II

Jembatan khusus yang dibangun sebelum berlakunya SNI 1725:2016 dan SNI 2833:2016 direkomendasikan untuk dilakukan analisis ulang menggunakan peraturan tersebut untuk mengantisipasi kemungkinan kerusakan atau kegagalan yang terjadi (Sinatra dkk., 2020). Baik kerusakan maupun perubahan peraturan pada masa layan dapat menyebabkan struktur tidak lagi memenuhi persyaratan sehingga perkuatan dibutuhkan untuk meningkatkan kekuatan dan daktilitas jembatan (Suarjana dkk., 2020).

Kombinasi pembebanan gempa pada RSNI T-03-2005 tidak memperhitungkan beban lalu lintas, sedangkan pada SNI 1725:2016 memperhitungkan. Peningkatan beban lalu lintas mempengaruhi kondisi jembatan, dengan meningkatnya beban lalu lintas maka semakin rendah load rating jembatan (Riyansyah dkk., 2020). Perubahan pada pembebanan gempa yaitu peta gempa dan faktor modifikasi respon gempa. Pada SNI 2833:2008 menggunakan Peta Zona Gempa Indonesia Pusat Litbang Teknologi Sumber Daya Air periode ulang 500 tahun dengan faktor modifikasi respon gempa untuk kolom tunggal sebesar 3-4 dan kolom majemuk sebesar 5-6 sedangkan pada peraturan yang berlaku yaitu SNI 2833:2016 Peta Sumber dan Bahaya Gempa Indonesia 2017 dengan periode ulang 1000 tahun dengan faktor modifikasi respon gempa sebesar 2 untuk kolom tunggal dan 3.5 untuk kolom majemuk.

Perbandingan respon spektrum gempa saat perencanaan menggunakan peraturan SNI 2833:2008 dan respon spektrum berdasarkan peraturan yang berlaku saat ini SNI 2833:2016 ditunjukkan pada Gambar 2. Pada pembebanan gempa Jembatan Lemah Ireng II mengalami kenaikan nilai spektra permukaan tanah pada periode pendek (SDS, T=0,2) arah memanjang (kolom majemuk) sebesar 38,47% sedangkan pada arah melintang (kolom tunggal) sebesar 45,39%. Berdasarkan grafik tersebut diketahui terjadi peningkatan beban gempa sehingga perlu diketahui tingkat kinerja jembatan berdasarkan performance based seismic design menggunakan metode Non-Linear Time History Analysis.

Gambar 2. Respon spektrum SNI 2833:2008 dan SNI 2833:2016 pada Jembatan Lemah Ireng II

Perencanaan tahan gempa berbasis kinerja (*performance based seismic design*) adalah perencanaan struktur sesuai dengan level kinerja yang diinginkan ketika terjadi gempa sehingga dapat dihasilkan struktur yang efisien. Metode *performance based design* memberikan kontrol dan pengelolaan risiko yang lebih baik, dan menghilangkan asumsi yang tidak realistis (Awasthi dkk., 2020).

Aspek yang perlu diperhatikan dalam pemilihan level kineria vaitu risiko keselamatan, kesiapan pakai, dan kerugian harta benda setelah terjadi gempa. Perencanaan berbasis kinerja bertujuan untuk mengetahui perilaku struktur jika dikenai macam intensitas berbagai gempa. Perencanaan berbasis kinerja dapat digunakan pada tahapan perencanaan, pelaksanaan, dan perawatan. Hal tersebut bertujuan untuk memprediksi tingkat kerusakan sesuai dengan rencana gempa dan dapat menentukan langkah perbaikan yang diperlukan (National Cooperative Highway Research Program, 2013). Performance based seismic design

menentukan tingkat kinerja jembatan berdasarkan kategori kepentingan jembatan pada upper level ground motion (gempa periode ulang 1000 tahun) dan lower level ground motion (gempa periode ulang 100 tahun) dengan parameter yang ditinjau pada (National Cooperative pier Highway Research Program, 2020). Pier merupakan elemen kritikal jembatan untuk perlindungan keselamatan jiwa pengguna, tingkat kerusakan pier jembatan telah didefinisikan dengan baik dalam berbagai peraturan (Zhang & Alam, 2019). Parameter pada pier yang ditinjau sebagai kriteria penentuan tingkat kerja antara lain berdasarkan NCHRP Synthesis 440 adalah simpangan horizontal pier, dan berdasarkan NCHRP Research Report 949 adalah regangan tekan beton dan regangan tarik tulangan baja (National Cooperative Highway Research Program, 2013, 2020).

Metode Penelitian

Jembatan Lemah Ireng II merupakan obyek penelitian ini dimana pembangunan jembatan tersebut selesai pada tahun 2014. Penelitian ini dilakukan untuk mengetahui kinerja Jembatan Lemah Ireng II berbasis kinerja terhadap peraturan perencanaan yang berlaku yaitu SNI 1725:2016 dan SNI 2833:2016.

Metodologi dalam panellation ini dilakukan pada tiga tahap yaitu tahap pengumpulan data, tahap pemodelan jembatan, dan tahap analisis kondisi jembatan berbasis kinerja (*performanced based*). Batasan penelitian ini fondasi dan interaksi antara tanah dan struktur tidak dianalisis.

Data Penelitian

Data sekunder terdiri dari properti material, *as built drawing*, data tanah dan literaturliteratur terkait evaluasi kinerja jembatan. Data teknis Jembatan Lemah Ireng II adalah sebagai berikut:

Bangunan atas	:	Box girder balance
		cantilever
Bangunan bawah	:	Bor pile
Panjang jembatan	:	300 meter (83,75m
		+132,5m +83,75m)
Lebar jembatan	:	25,2 meter

Jumlah jalur	: 4 lajur 2 arah
Jumlah pilar	: 4 buah (2 buah 11,5 m
-	dan 2 buah 22 m)
Jenis peletakan	: Pot <i>bearing</i>

Berikut properti material, penampang pier, tampak atas, tampak samping, dan tiga dimensi Jembatan Lemah Ireng II:

Tabel 1. Propertis material jembatan

Beton (cast in place)				
Box girder	$f'_c = 40 \text{ MPa}$			
Pier	$f'_c = 35 \text{ MPa}$			
Tendon prat	egang girder			
(19 strand	Ø15,2 mm)			
Kuat tarik	f' _s = 1860 MPa			
Kuat leleh	f _{py} = 1680 MPa			
Modulus elastisitas	$E_{s} = 195.000 \text{ MPa}$			
Baja tulangan ($D \ge 13 \text{ mm}$)				
Kuat leleh	$f_y = 420 \text{ MPa}$			
Modulus elastisitas	$E_{s} = 200.000 \text{ MPa}$			

Gambar 3. Tipikal dimensi dan tulangan pier

Gambar 4. Tampak Jembatan Lemah Ireng II

Pembebanan Jembatan

Pada Non-linear Time History Analysis berfokus pada kombinasi pembebanan ekstrem I berdasarkan SNI 2833:2016. Jembatan Lemah Ireng II termasuk kategori jembatan penting, dengan kombinasi pembebanan sebagai berikut:

Kombinasi 1=1DL+0,3LL+1EQ_{x(ns)}+1EQ_{y(ew)} Kombinasi 2=1DL+0,3LL+1EQ_{x(ew)}+1EQ_{y(ns)} dengan kombinasi tersebut maka beban yang digunakan adalah beban mati, beban mati tambahan, pengaruh prategang, beban lajur "D" berdasarkan SNI 1725:2016 tentang Tabel 2.

Pada *performance based seismic design* beban gempa ditinjau menggunakan gempa riwayat waktu pada *upper level ground motion* (gempa periode ulang 1000 tahun) dan *lower level ground motion* (gempa periode ulang 100 tahun). Peta sumber dan bahaya gempa Indonesia 2017 yang tersedia pada gempa periode ulang 1000 tahun (PusGen, 2017), maka untuk penskalaan gempa periode ulang 100 tahun dilakukan berdasarkan Eurocode 8: Part 2 *Design of Structure Earthquake Resistance* (European Committee for Standardization, 2005) menurut Pers. (1).

$$\frac{a_{gc}}{a_{g,R}} = \left(\frac{T_{Rc}}{T_{NRC}}\right)^k \tag{1}$$

dengan a_{gc} = parameter percepatan tanah pada periode ulang rencana, $a_{g,R}$ = parameter percepatan tanah pada periode ulang target, T_{Rc} = periode ulang rencana, T_{NRC} = periode ulang target, dan k = 0,3. Sehingga dihasilkan target respon spektrum ditunjukkan pada Gambar 5. Pembebanan untuk Jembatan ditunjukkan pada Grafik hasil pencocokan spektra gempa ditunjukkan pada Gambar 6 dan Gambar 7.

Gambar 5. Grafik target respon spektrum

Deagregasi Rekaman Gerak Tanah

Berdasarkan pembacaan Peta Deagregasi Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa (PusGen, 2022) didapatkan hasil deagregasi yang ditunjukkan pada Tabel 3. Menurut hasil deagregasi dipilih tujuh rekaman gempa melalui PEER NGA WEST dan COSMOS Strong Motion Center. Tujuh rekaman gempa yang dipilih ditunjukkan pada Tabel 4. Grafik hasil pencocokan spektra gempa ditunjukkan pada Gambar 6 dan Gambar 7.

Beban	Besaran
Beban mati	Beton f _c ' 35 MPa, $\gamma_{c1} = 24 \text{ kN/m}^3$
	Beton f _c ' 40 MPa, $\gamma_{c2} = 24 \text{ kN/m}^3$
	Baja $\gamma_s = 78,5 \text{ kN/m}^3$
Beban mati tambahan	Aspal tebal 5 cm, $\gamma_a = 22 \text{ kN/m}^3$
	Beton f_c' 35 MPa, $\gamma_{c1} = 24 \text{ kN/m}^3$
Pengaruh prategang	Tegangan tarik izin maksimum = $0.7 \times f_{pu}$ = 1302 MPa
Beban lajur	Beban terbagi rata (BTR) = $4,95 \text{ kN/m}^2$
-	Beban garis terpusat (BGT) = 63.7 kN/m

Tabel 2. Pembebanan Jembatan Lemah Ireng II

Tabel 3. Hasil deagregasi di lokasi Jembatan Lemah Ireng II

Parameter Pemilihan Gerak	Nilai	
	Benioff	7,2-7,6
Magnitud Gempa (Mw)	Megathrust	8,6-8,8
	Shallow crustal	6-6,6
	Benioff	120-200
Jarak lokasi ke sumber gempa (km)	Megathrust	150-200
	Shallow crustal	20-40

Tabel 4. Data rekaman gempa berdasarkan hasil deagregasi

Gambar 8. Hasil pencocokan rekam gempa India-Burma Border arah utara-selatan (memanjang jembatan)

Pemodelan non linier pier

Pada evaluasi kinerja jembatan menggunakan metode Nonlinear Time History Analysis dilakukan pemodelan sendi plastis pada elemen pilar. Pemodelan sendi plastis berdasarkan hubungan momen dan kurvatur penampang dengan memperhatikan properti non linier material. Properti non linier material beton memperhitungkan kondisi beton confined dan unconfined menggunakan Metode Mander (Mander dkk., 1988) ditunjukkan pada Gambar 9. Sedangkan pada tulangan baja berdasarkan Metode Menegotto-Pinto (Menegotto & Pinto, 1973).

Berikut momen kurvatur penampang pier arah longitudinal dan transversal jembatan berdasarkan properti non linear material:

Gambar 10. Momen kurvatur penampang pier arah longitudinal jembatan

arah transversal jembatan

Analisis data

Pemodelan sendi plastis pada setiap pier menghasilkan kurva histerisis hubungan momen dan rotasi baik arah longitudinal dan transversal jembatan, berikut kurva histerisis pier 1.a akibat rekam gempa India-Burma Border 1 periode ulang 1000 tahun.

Gambar 12. Kurva histerisis Pier 1.a pada rekam gempa India-Burma Border 1 periode ulang 1000 tahun arah longitudinal (a) dan arah transversal jembatan (b)

Jembatan Lemah Ireng II termasuk kategori jembatan penting sehingga disyaratkan memenuhi tingkat kinerja *Fully Operational* pada *lower level ground motion* (periode ulang gempa 100 tahun) dan tingkat kinerja *Operational* pada *upper level ground motion* (periode ulang gempa 1000 tahun) (National Cooperative Highway Research Program, 2020).

Kriteria parameter tingkat kinerja jembatan ditentukan berdasarkan NCHRP Synthesis 440 *Performance-Based Seismic Bridge Design* untuk parameter simpangan horizontal pier dan NCHRP Research Report 949 *Proposed AASHTO Guidelines for Performance-Based Seismic Bridge Design* untuk parameter regangan tekan beton dan regangan tarik tulangan baja (National Cooperative Highway Research Program, 2013, 2020).

Hasil dan Pembahasan

Kinerja Jembatan Berdasarkan Simpangan Horizontal (Drift) Pier

Kriteria tingkat kinerja Jembatan Lemah Ireng II berdasarkan *drift* pier pada NCHRP Synthesis 440 ditunjukkan pada dengan perhitungan persentase *drift* ditunjukkan pada Pers. (2).

$$Drift = \frac{Displacement}{\text{Tinggi Pier}} \times 100\%$$
(2)

Hasil analisis berupa grafik *displacement* maksimum yang terjadi pada bagian atas pier arah longitudinal dan transversal dengan contoh ditunjukkan pada Gambar 13. Perbandingan grafik *drift* Pier 1.a arah longitudinal dikenai 7 pasang rekaman gempa ditunjukkan pada Gambar 14.

Tabel 5. Batasan kriteria kinerja jembatan berdasarkan drift pier pada NCHRP Synthesis 440

Gambar 14. Perbandingan *drift* Pier 1.a arah longitudinal terhadap parameter tingkat kinerja berdasarkan NCHRP Synthesis 440

		Drift Pier 1.a Arah Longitudinal						
Sumbar Compo	Kombinasi	l	Upper Level	Ground Motion	L	Lower Level Ground Motion		
Sumber Gempa	Gempa	D _X (mm)	Drift (%)	Performa Struktur	D _X (mm)	Drift (%)	Performa Struktur	
India Dumua Dandan	1	62,95	0,547%	Fully Operational	41,27	0,359%	Fully Operational	
India-Burma Border	2	57,44	0,499%	Fully Operational	37,21	0,324%	Fully Operational	
El Salvadar	1	62,78	0,546%	Fully Operational	39,30	0,342%	Fully Operational	
El Salvadol	2	56,31	0,490%	Fully Operational	29,31	0,255%	Fully Operational	
Talvashi Old	1	62,65	0,545%	Fully Operational	39,24	0,341%	Fully Operational	
токасті-Окі	2	72,68	0,632%	Fully Operational	44,07	0,383%	Fully Operational	
	1	44,22	0,385%	Fully Operational	38,71	0,337%	Fully Operational	
iquique	2	47,98	0,417%	Fully Operational	36,27	0,315%	Fully Operational	
Mishaaaa	1	63,15	0,549%	Fully Operational	38,49	0,335%	Fully Operational	
Michoacan	2	64,80	0,563%	Fully Operational	37,72	0,328%	Fully Operational	
Sumantitian IIIIn 02	1	65,88	0,573%	Fully Operational	47,90	0,417%	Fully Operational	
Superstition Hills-02	2	61,93	0,539%	Fully Operational	46,44	0,404%	Fully Operational	
E.'	1	70,09	0,609%	Fully Operational	33,20	0,289%	Fully Operational	
Friuli Italy-01	2	56,04	0,487%	Fully Operational	35,48	0,309%	Fully Operational	
Minimal		44,22	0,385%	Fully Operational	29,31	0,255%	Fully Operational	
Maksimal		72,68	0,632%	Fully Operational	47,90	0,417%	Fully Operational	
Rata-rata		60,47	0,526%	Fully Operational	38,90	0,338%	Fully Operational	

Tabel 6. Analisis tingkat kinerja berdasarkan drift pada Pier 1.a arah longitudinal jembatan

Tabel 7. Rekapitulasi tingkat kinerja berdasarkan drift pier pada upper level ground motion

			Drift Pier Upper L	evel Ground M	otion			
Pier		Arah Lon	gitudinal		Arah Transversal			
	D _x (mm)	Drift (%)	Performa Struktur	D _z (mm)	Drift (%)	Performa Struktur		
Pier 1.a	60,57	0,527%	Fully Operational	22,30	0,194%	Fully Operational		
Pier 1.b	59,86	0,520%	Fully Operational	26,15	0,227%	Fully Operational		
Pier 2.a	64,03	0,291%	Fully Operational	69,41	0,315%	Fully Operational		
Pier 2.b	65,32	0,297%	Fully Operational	64,78	0,294%	Fully Operational		

Tabel 8. Rekapitulasi tingkat kinerja berdasarkan drift pier pada lower level ground motion

			Drift Pier Lower 1	Level Ground M	<i>lotion</i>			
Pier		Arah Lon	gitudinal		Arah Transversal			
	D _x (mm)	Drift (%)	Performa Struktur	D _z (mm)	Drift (%)	Performa Struktur		
Pier 1.a	38,37	0,334%	Fully Operational	13,10	0,114%	Fully Operational		
Pier 1.b	37,14	0,323%	Fully Operational	15,61	0,136%	Fully Operational		
Pier 2.a	43,97	0,200%	Fully Operational	40,83	0,186%	Fully Operational		
Pier 2.b	45,22	0,206%	Fully Operational	38,11	0,173%	Fully Operational		

Amrina, dkk – Evaluasi kinerja pilar Jembatan Lemah Ireng II ...

Pada SNI 2833:2016, dengan penggunaan 7 rekaman gempa maka penentuan tingkat kinerja jembatan ditentukan berdasarkan nilai rata-rata parameter. Pada Tabel 6 menunjukkan bahwa berdasarkan drift Pier 1.a arah longitudinal jembatan, tingkat kinerja jembatan memenuhi kriteria Fully Operational. Hasil tingkat kinerja ke empat pier pada upper dan lower level ground motion ditunjukkan Tabel 7 dan Tabel 8, diketahui bahwa tingkat kinerja jembatan adalah Fully Operational baik pada upper dan lower level ground motion, sehingga memenuhi persyaratan tingkat kinerja jembatan kategori penting.

Kinerja Jembatan Berdasarkan Regangan Tekan Beton

Pemodelan penampang pier menggunakan *fiber hinge* dengan melakukan *meshing* sebesar 10 cm x 10 cm ditunjukkan pada Gambar 15, untuk mengetahui regangan dan tegangan maksimum pada beton dan baja tulangan.

Gambar 15. Pemodelan sendi plastis dengan *fiber hinge*

Batasan kriteria tingkat kinerja berdasarkan regangan tekan beton menurut NCHRP Research Report 949 ditunjukkan pada . Hasil analisis berupa grafik tegangan dan regangan tekan maksimum pada beton. Lokasi regangan maksimum ditinjau pada sudutsudut penampang bawah pier, dengan contoh ditunjukkan pada Gambar 16. Hasil analisis tingkat kinerja Pier 1.a yang dikenai 7 pasang rekaman gempa baik pada *upper level* atau *lower ground motion* ditunjukkan pada Gambar 17 dan Tabel 10.

Tabel 9. Batasan kriteria kinerja berdasarkan regangan tekan beton pada NCHRP Research Report 949

Tingkat Kinerja	Parameter	Nilai
PL1: Life Safety	$\varepsilon_c = 1.4 \left(0.004 + 1.4 \frac{\rho_v f_{yh} \varepsilon_{su}}{f_{cc}} \right)$	≤ 0,030
PL2: Operational	$\varepsilon_c = \left(0,004 + 1,4\frac{\rho_v f_{yh}\varepsilon_{su}}{f_{cc}'}\right)$	≤ 0,021
PL3: Fully Operational	≤ 0,004	\le 0,004

Gambar 16. Grafik tegangan regangan beton Pier 1.a pada rekam gempa India Burma Border 1 periode ulang 1000 tahun

Gambar 17. Perbandingan regangan tekan beton Pier 1.a terhadap parameter tingkat kinerja berdasarkan NCHRP Research Report 949

	77 1	Regangan Tekan Beton Pier 1,a					
Sumber Gempa	Kombinasi	Upper L	evel Ground Motion	Lower L	evel Ground Motion		
	Gempa	Regangan	Performa Struktur	Regangan	Performa Struktur		
India-Burma	1	0,00208	Fully Operational	0,00150	Fully Operational		
Border	2	0,00200	Fully Operational	0,00143	Fully Operational		
El Calcadan	1	0,00210	Fully Operational	0,00136	Fully Operational		
El Salvador	2	0,00200	Fully Operational	0,00130	Fully Operational		
Tokachi-Oki	1	0,00208	Fully Operational	0,00135	Fully Operational		
	2	0,00248	Fully Operational	0,00132	Fully Operational		
Invious	1	0,00162	Fully Operational	0,00119	Fully Operational		
iquique	2	0,00147	Fully Operational	0,00130	Fully Operational		
Mishaaaa	1	0,00182	Fully Operational	0,00130	Fully Operational		
Michoacan	2	0,00171	Fully Operational	0,00128	Fully Operational		
Superstition	1	0,00211	Fully Operational	0,00122	Fully Operational		
Hills-02	2	0,00206	Fully Operational	0,00141	Fully Operational		
Enial: Italy, 01	1	0,00267	Fully Operational	0,00189	Fully Operational		
Friuli Italy-01	2	0,00249	Fully Operational	0,00138	Fully Operational		
Minimal		0,00147	Fully Operational	0,00119	Fully Operational		
Maksi	mal	0,00267	Fully Operational	0,00189	Fully Operational		
Rata-	rata	0,00205	Fully Operational	0,00137	Fully Operational		

Tabel 10. Analisis tingkat kinerja berdasarkan regangan tekan beton Pier 1.a

Tabel 11. Rekapitulasi analisis tingkat kinerja jembatan berdasarkan regangan tekan beton pier

	Rata-rata Regangan Tekan Beton					
Pier	Upper L	evel Ground Motion	Lower L	evel Ground Motion		
	Regangan	Performa Struktur	Regangan	Performa Struktur		
Pier 1.a	0,00205	Fully Operational	0,00137	Fully Operational		
Pier 1.b	0,00273	Fully Operational	0,00173	Fully Operational		
Pier 2.a	0,00139	Fully Operational	0,00098	Fully Operational		
Pier 2.b	0,00112	Fully Operational	0,00077	Fully Operational		

Analisis tingkat kinerja jembatan berdasarkan regangan tekan beton dilakukan pada ke empat pier dengan metode analisis yang sama. Rekapitulasi hasil analisis pada seluruh pier Jembatan Lemah Ireng II ditunjukkan pada Tabel 11. Berdasarkan tabel tersebut diketahui bahwa Jembatan Lemah Ireng II memenuhi tingkat kinerja *Fully Operational* baik pada analisis kombinasi gempa 1000 tahun dan 100 tahun.

Kinerja Jembatan Berdasarkan Regangan Tarik Tulangan Baja

Analisis tingkat kinerja jembatan berdasarkan regangan tulangan baja diambil nilai maksimum pada setiap pier jembatan. Nilai maksimum regangan tulangan baja tersebut berada pada tulangan yang berlokasi di sudut-sudut atau tepi di penampang bawah pier. Batasan kriteria tingkat kinerja Jembatan Lemah Ireng II berdasarkan NCHRP Research Report 949 ditunjukkan pada contoh hasil dari analisis tersebut berupa kurva tegangan dan regangan tulangan baja pada Pier 1.a yang ditunjukkan pada Gambar 18, serta analisis berdasarkan kriteria tingkat kinerja NCHRP Research Report 949 ditunjukkan pada Gambar 19 dan Tabel 13.

Tinter	Description]	Nilai Batasa	in Parameter	r
I ingkat Kinerja	Parameter	Pier 1.a	Pier 1.b	Pier 2.a	Pier 2.b
PL1: Life Safety	$\epsilon_{s \text{ buckling}}^{\text{bar}} = 0.032 + 790\rho_{s}\frac{f_{\text{yhe}}}{E_{s}} - 0.14\frac{P}{f_{\text{ce}}^{\prime}A_{g}}$	≤ 0,063	≤ 0,053	≤ 0,055	≤ 0,063
PL2: Operational	$\epsilon_{\rm s}=0.8~\epsilon_{\rm s}_{\rm buckling}^{\rm bar}$	\leq 0,050	\le 0,042	\leq 0,044	\leq 0,050
PL3: Fully Operational	\leq 0,010	\leq 0,010	\leq 0,010	\leq 0,010	\le 0,010
0,012 0,010 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Sumber Gempa		an fi	ai teastai te	

Tabel 12. Batasan kriteria kinerja berdasarkan regangan tarik tulangan baja pada NCHRP Research Report 949

WWWW Upper Level Contract Lower Level •••••• Yield - Fully Operational

Gambar 19. Perbandingan regangan tarik tulangan baja Pier 1.a terhadap parameter tingkat kinerja berdasarkan NCHRP Research Report 949

Sumber Gempa	Kombinasi Gempa	Regangan Tarik Tulangan Baja Pier 1.a				
		Upper Level Ground Motion		Lower Le	Lower Level Ground Motion	
		Regangan	Performa Struktur	Regangan	Performa Struktur	
India-Burma	1	0,00371	Fully Operational	0,00209	Fully Operational	
Border	2	0,00318	Fully Operational	0,00204	Fully Operational	
El Salvador	1	0,00365	Fully Operational	0,00208	Fully Operational	
	2	0,00293	Fully Operational	0,00163	Fully Operational	
Tokachi-Oki	1	0,00365	Fully Operational	0,00212	Fully Operational	
	2	0,00439	Fully Operational	0,00204	Fully Operational	
Iquique	1	0,00252	Fully Operational	0,00195	Fully Operational	
	2	0,00245	Fully Operational	0,00205	Fully Operational	
Michoacan	1	0,00334	Fully Operational	0,00200	Fully Operational	
	2	0,00337	Fully Operational	0,00194	Fully Operational	
Superstition	1	0,00372	Fully Operational	0,00232	Fully Operational	
Ĥills-02	2	0,00352	Fully Operational	0,00185	Fully Operational	
Friuli Italy-01	1	0,00418	Fully Operational	0,00186	Fully Operational	
	2	0,00374	Fully Operational	0,00172	Fully Operational	
Minimal		0,00245	Fully Operational	0,00163	Fully Operational	
Maksimal		0,00439	Fully Operational	0,00232	Fully Operational	
Rata-rata		0,00345	Fully Operational	0,00198	Fully Operational	

Tabel 13. Analisis tingkat kinerja berdasarkan regangan tarik tulangan baja pada Pier 1.a

Tabel 14. Rekapitulasi nilai rata-rata regangan tulangan tarik baja

	Rata-rata Regangan Tarik Tulangan Baja					
Pier	Upper L	evel Ground Motion	Lower Level Ground Motion			
_	Regangan	Performa Struktur	Regangan	Performa Struktur		
Pier 1.a	0,00345	Fully Operational	0,00198	Fully Operational		
Pier 1.b	0,00331	Fully Operational	0,00185	Fully Operational		
Pier 2.a	0,00147	Fully Operational	0,00083	Fully Operational		
Pier 2.b	0,00136	Fully Operational	0,00088	Fully Operational		

				e		
Parameter Performa Level		Tingkat Kinerja Jembatan				
Pier	Gempa	Pier 1.a	Pier 1.b	Pier 2.a	Pier 2.b	
Drift Arah	Upper	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Memanjang	Lower	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Drift Arch Malintana	Upper	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Drift Aran Menntang	Lower	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Regangan Tekan	Upper	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Beton	Lower	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Regangan Tarik	Upper	Fully Operational	Fully Operational	Fully Operational	Fully Operational	
Tulangan Baja	Lower	Fully Operational	Fully Operational	Fully Operational	Fully Operational	

Tabel 15. Rekapitulasi performa struktur Jembatan Lemah Ireng II

tingkat kinerja berdasarkan Analisis regangan tulangan tarik baja pada Pier 1.a, Pier 1.b, Pier 2.a, dan Pier 2.b dilakukan dengan metode yang sama, dengan rekapitulasi hasil analisis berdasarkan rataregangan tarik tulangan rata baja ditunjukkan pada Tabel 14. Berdasarkan tabel tersebut diketahui bahwa tingkat kinerja seluruh pier jembatan memenuhi kriteria Fully Operational dengan regangan tarik tulangan baja pada Pier 1.a dan Pier 1.b yang dikenai upper level ground motion melewati regangan leleh (> 0,002). Tulangan tarik baja yang telah leleh menunjukan bahwa perilaku tulangan inelastis, sehingga pemodelan non-linier material dan penampang dapat mempresentasikan kondisi tersebut.

Hasil rekapitulasi analisis tingkat kinerja Jembatan Lemah Ireng II ditunjukkan pada Tabel 15. Menurut tabel tersebut diketahui bahwa tingkat kineria Jembatan Lemah Ireng II pada tingkat Fully Operational berdasarkan parameter drift arah memanjang jembatan, drift arah melintang jembatan, regangan tekan beton, dan regangan tarik baja baik pada tingkat gempa upper level ground motion dan lower level ground motion. Jembatan Lemah Ireng II adalah jembatan penting, berdasarkan NCHRP Research Report 949 persyaratan tingkat kinerja jembatan Fully Operational pada lower level ground motion dan Operational pada upper level ground motion schingga Jembatan Lemah Ireng II memenuhi persyaratan tersebut.

Kesimpulan

Berdasarkan hasil analisis tingkat kinerja jembatan dengan tinjauan pilar adalah *Fully Operational* baik pada *upper* maupun *lower level ground motion*, sehingga memenuhi persyaratan tersebut. Dengan tingkat kinerja *Fully Operational* maka kondisi jembatan setelah terjadi gempa tidak mengalami kerusakan atau kerusakan terjadi sangat kecil yang tidak membutuhkan penanganan segera sehingga jembatan dapat beroperasi segera setelah gempa.

Daftar pustaka

- AASHTO. (2002). Standard specifications for highway bridges. American Association of State Highway and Transportation Officials.
- Awasthi, J., Ghosh, G., & Mehta, P. K. (2020). Seismic Design of A Curved Bridge as per Performance Based Criteria. *Materials Today: Proceedings*, 38, 3014–3018. https://doi.org/10.1016/j.matpr.2020.0 9.324
- Badan Standardisasi Nasional. (2005). RSNI T-02-2005 Standar Pembebanan Untuk Jembatan. Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2008). SNI 2833:2008 Standar Perencanaan Ketahanan Gempa untuk Jembatan. Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2016a). SNI 1725:2016 Pembebanan Untuk Jembatan. Badan Standarisasi Nasional. www.bsn.go.id

Amrina, dkk – Evaluasi kinerja pilar Jembatan Lemah Ireng II ...

- Badan Standardisasi Nasional. (2016b). SNI 2833:2016 Perencanaan Jembatan Terhadap Beban Gempa. Badan Standardisasi Nasional. www.bsn.go.id
- European Committee for Standardization. (2005). Eurocode 8: Design of Structures for Earthquake Resistance – Part 2: Bridges. European Committee for Standardization.
- Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. *Journal Structur Engineering*, *114*(8), 1804– 1826.
- Menegotto, M., & Pinto, P. E. (1973). Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. *IABSE Reports of the Working Commissions*, *13.* https://doi.org/10.5169/seals-13741
- National Cooperative Highway Research Program. (2013). NCHRP Synthesis 440 Performance-Based Seismic Bridge Design. Transportation Research Board.
- National Cooperative Highway Research Program. (2020). NCHRP Research Report 949 Proposed AASHTO Guidelines for Performance-Based Seismic Bridge Design. Transportation Research Board. https://doi.org/10.17226/25913
- PusGen. (2017). *Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017*. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman.
- PusGen. (2022). Peta Deagregasi Bahaya Gempa Indonesia untuk Perencanaan dan Evaluasi Infrastruktur Tahan Gempa. Direktorat Bina Teknik Permukiman dan Perumahan.
- Riyansyah, M., Budi Wijayanto, P., Riyanto Trilaksono, B., Adi Putra, S., & Shona

Laila, D. (2020). *Real Time Bridge Dynamic Response: Bridge Condition Assessment and Early Warning System. 10*(1).

- Sigdel, L. D., Al-Qarawi, A., Leo, C. J., Liyanapathirana, S., & Hu, P. (2021). Geotechnical Design Practices and Soil–Structure Interaction Effects of an Integral Bridge System: A Review. In *Applied Sciences (Switzerland)* (Vol. 11, Issue 15). MDPI AG. https://doi.org/10.3390/app11157131
- Sinatra, F., Riyansyah, M., & Suarjana, M. (2020). Performance Evaluation of Existing Special Bridges in Indonesia Based on SNI 1725:2016 and SNI 2833:2016 (Case Study of Dr. Ir. Soekarno Bridge). Jurnal Teknik Sipil, 27(1), 51–60.
- Suarjana, M., Octora, D. D., & Riyansyah, M. (2020). Seismic Performance of RC Hollow Rectangular Bridge Piers Retrofitted by Concrete Jacketing Considering the Initial Load and Interface Slip. Journal of Engineering and Technological Sciences, 52(3), 343–368. https://doi.org/10.5614/j.eng.technol.s ci.2020.52.3.3
- Zhang, Q., & Alam, M. S. (2019). Performance-Based Seismic Design of Bridges: A Global Perspective and Critical Review of Past, Present and Future Directions. *Structure and Infrastructure Engineering*, 15(4), 539–554. https://doi.org/10.1080/15732479.201 8.1558269