Main Article Content

Abstract

The effect of potential and gas flow rate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide to ethanol. The conversion process is carried out using a NaHCO3 electrolyte solution in an electrochemical reactor equipped with a cathode and anode. As cathode is used brass, while as anode is used carbon. The result of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced qualitatively and quantitatively. The optimum electrochemical synthesis conditions to convert carbon dioxide to ethanol are potential and gas flow rate are 3 volts and 0.5 L/minutes with ethanol concentration yielded 1.32%.

Keywords

conversion carbon dioxide electrochemical synthesis ethanol brass optimum conditions

Article Details

How to Cite
Ramadan, S., & Riyanto, R. (2017). Conversion of Carbon Dioxide to Ethanol by Electrochemical Synthesis Method Using Brass as A Cathode. EKSAKTA: Journal of Sciences and Data Analysis, 17(2), 86–97. https://doi.org/10.20885/eksakta.vol17.iss2.art1

References

  1. Afiati, A.A., 2016, Elektrosintesis Etanol dari Gas Karbon Dioksida (CO2 dengan Menggunakan Elektroda Karbon, Skripsi, Universitas Islam Indonesia, Yogyakarta.
  2. Fitriani, S., 2012, Studi Reaksi Reduksi CO2 dengan Metode Elektrokimia Menggunakan Elektroda Cu, Skripsi, Universitas Indonesia, Depok.
  3. Hakim, S., 2015, Studi Konversi Karbondioksida (CO2) Menjadi Metanol Menggunakan Elektroda Tembaga (Cu) dengan Teknik Reduksi Elektrokimia (Electrochemical Reduction), Skripsi, Universitas Islam Indonesia, Yogyakarta.
  4. Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay,K., Reick, C.H., Roelandt, C., Segschneider, J., Tjiputra, J., 2013, Twenty-First Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways, DOI: 10.1175/JCLI-D-1200554.1.
  5. Kaneco, S., Iiba, K., Hiei, N.H., Ohta, K., Mizuno, T., Suzuki, T., 2002, Electrochemical Reduction of Carbon Dioxide to Ethylene with High Faradaic Efficiency at a Cu Electrode in CsOH/Methanol, Electrochimica Acta, (44):26, 4701 4706.
  6. Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N. Kibsgaard, J., Jaramillo, T.F., 2014, Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, J. Am. Chem. Soc., 2014, 136 (40), pp 14107–14113.
  7. Lee, J.A. dan Tak, T., 2001, Electrocatalytic Activity of Cu Electrode in Electroreduction of CO2. Electrochimica. 46: 3015-3022.
  8. Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L. A., 2007, Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge UK and New York, USA.
  9. Ratna, 2008, Pengaruh Bahan Pengembang pada Wafer, Laporan Kerja Praktik, Universitas Katolik Widya Mandala, Surabaya.
  10. Rohman, A. dan Gandjar, G.H., 2007, Kimia Farmasi Analisis, Pustaka Pelajar, Yogyakarta.
  11. Yang, H.P., Yue, Y.N., Qin, S., Wang, H., Lu, J.X., 2016, Selective Electrochemical Reduction of CO2 to Different Alcohol Products by an Organically Doped Alloy Catalyst, DOI: 10.1039/c6gc00091f.