Main Article Content
Abstract
The effect of potential and gas flow rate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide to ethanol. The conversion process is carried out using a NaHCO3 electrolyte solution in an electrochemical reactor equipped with a cathode and anode. As cathode is used brass, while as anode is used carbon. The result of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced qualitatively and quantitatively. The optimum electrochemical synthesis conditions to convert carbon dioxide to ethanol are potential and gas flow rate are 3 volts and 0.5 L/minutes with ethanol concentration yielded 1.32%.
Keywords
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
References
- Afiati, A.A., 2016, Elektrosintesis Etanol dari Gas Karbon Dioksida (CO2 dengan Menggunakan Elektroda Karbon, Skripsi, Universitas Islam Indonesia, Yogyakarta.
- Fitriani, S., 2012, Studi Reaksi Reduksi CO2 dengan Metode Elektrokimia Menggunakan Elektroda Cu, Skripsi, Universitas Indonesia, Depok.
- Hakim, S., 2015, Studi Konversi Karbondioksida (CO2) Menjadi Metanol Menggunakan Elektroda Tembaga (Cu) dengan Teknik Reduksi Elektrokimia (Electrochemical Reduction), Skripsi, Universitas Islam Indonesia, Yogyakarta.
- Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay,K., Reick, C.H., Roelandt, C., Segschneider, J., Tjiputra, J., 2013, Twenty-First Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways, DOI: 10.1175/JCLI-D-1200554.1.
- Kaneco, S., Iiba, K., Hiei, N.H., Ohta, K., Mizuno, T., Suzuki, T., 2002, Electrochemical Reduction of Carbon Dioxide to Ethylene with High Faradaic Efficiency at a Cu Electrode in CsOH/Methanol, Electrochimica Acta, (44):26, 4701 4706.
- Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N. Kibsgaard, J., Jaramillo, T.F., 2014, Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, J. Am. Chem. Soc., 2014, 136 (40), pp 14107–14113.
- Lee, J.A. dan Tak, T., 2001, Electrocatalytic Activity of Cu Electrode in Electroreduction of CO2. Electrochimica. 46: 3015-3022.
- Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L. A., 2007, Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge UK and New York, USA.
- Ratna, 2008, Pengaruh Bahan Pengembang pada Wafer, Laporan Kerja Praktik, Universitas Katolik Widya Mandala, Surabaya.
- Rohman, A. dan Gandjar, G.H., 2007, Kimia Farmasi Analisis, Pustaka Pelajar, Yogyakarta.
- Yang, H.P., Yue, Y.N., Qin, S., Wang, H., Lu, J.X., 2016, Selective Electrochemical Reduction of CO2 to Different Alcohol Products by an Organically Doped Alloy Catalyst, DOI: 10.1039/c6gc00091f.
References
Afiati, A.A., 2016, Elektrosintesis Etanol dari Gas Karbon Dioksida (CO2 dengan Menggunakan Elektroda Karbon, Skripsi, Universitas Islam Indonesia, Yogyakarta.
Fitriani, S., 2012, Studi Reaksi Reduksi CO2 dengan Metode Elektrokimia Menggunakan Elektroda Cu, Skripsi, Universitas Indonesia, Depok.
Hakim, S., 2015, Studi Konversi Karbondioksida (CO2) Menjadi Metanol Menggunakan Elektroda Tembaga (Cu) dengan Teknik Reduksi Elektrokimia (Electrochemical Reduction), Skripsi, Universitas Islam Indonesia, Yogyakarta.
Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L., Brovkin, V., Hajima, T., Kato, E., Kawamiya, M., Liddicoat, S., Lindsay,K., Reick, C.H., Roelandt, C., Segschneider, J., Tjiputra, J., 2013, Twenty-First Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways, DOI: 10.1175/JCLI-D-1200554.1.
Kaneco, S., Iiba, K., Hiei, N.H., Ohta, K., Mizuno, T., Suzuki, T., 2002, Electrochemical Reduction of Carbon Dioxide to Ethylene with High Faradaic Efficiency at a Cu Electrode in CsOH/Methanol, Electrochimica Acta, (44):26, 4701 4706.
Kuhl, K.P., Hatsukade, T., Cave, E.R., Abram, D.N. Kibsgaard, J., Jaramillo, T.F., 2014, Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces, J. Am. Chem. Soc., 2014, 136 (40), pp 14107–14113.
Lee, J.A. dan Tak, T., 2001, Electrocatalytic Activity of Cu Electrode in Electroreduction of CO2. Electrochimica. 46: 3015-3022.
Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L. A., 2007, Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge UK and New York, USA.
Ratna, 2008, Pengaruh Bahan Pengembang pada Wafer, Laporan Kerja Praktik, Universitas Katolik Widya Mandala, Surabaya.
Rohman, A. dan Gandjar, G.H., 2007, Kimia Farmasi Analisis, Pustaka Pelajar, Yogyakarta.
Yang, H.P., Yue, Y.N., Qin, S., Wang, H., Lu, J.X., 2016, Selective Electrochemical Reduction of CO2 to Different Alcohol Products by an Organically Doped Alloy Catalyst, DOI: 10.1039/c6gc00091f.