Main Article Content

Abstract

Poverty is an essential issue for every country, including Indonesia. Poverty can be caused by the scarcity of basic necessities or the difficulty of accessing education and employment. In 2019 Papua Province became the province with the highest poverty percentage at 27.53%. Seeing this, the district groupings formed in describing poverty conditions in Papua Province are based on similar characteristics using the variables Percentage of Poor Population, Gross Regional Domestic Product, Open Unemployment Rate, Life Expectancy, Literacy Rate, and Population Working in the Agricultural Sector using K-medoids clustering algorithm. The results of this study indicate that the optimal number of clusters to describe poverty conditions in Papua Province is 4 clusters with a variance of 0.012, where the first cluster consists of 10 districts, the second cluster consists of 5 districts, the third cluster consists of 12 districts, and the fourth cluster consists of 2 districts.

Keywords

clustering k-medoids Papua's poverty

Article Details

Author Biographies

Afdelia Novianti, Universitas Islam Indonesia, Indonesia

 

 

Irsyifa Mayzela Afnan, Universitas Islam Indonesia, Indonesia

 

 

Rafi Ilmi Badri Utama, Universitas Islam Indonesia, Indonesia

 

 

Edy Widodo, Universitas Islam Indonesia, Indonesia

 

 

How to Cite
Novianti, A., Afnan, I. M., Utama, R. I. B., & Widodo, E. (2021). Grouping of Districts Based on Poverty Factors in Papua Province Uses The K-Medoids Algorithm. Enthusiastic : International Journal of Applied Statistics and Data Science, 1(2), 94–102. https://doi.org/10.20885/enthusiastic.vol1.iss2.art6

References

  1. BAPPENAS, "Rencana Pembangunan Jangka Menengah Nasional 2004-2009", 2009.
  2. BAPPENAS, Badan Pembangunan Nasional, [Online]. Available: https://www.bappenas.go.id/id/berita-dan-siaran-pers/gelar-konferensi-pers-akhir-tahun-bappenas-paparkan-rkp-2021-capaian-sdgs-indonesia-dan-transformasi-ekonomi/.
  3. BPS, "Penduduk Fakir Miskin Indonesia Tahun 2002," 2002.
  4. E. Saputera, "Faktor-Faktor yang Mempengaruhi Kemiskinan di Provinsi Papua Periode 2006-2016," Jurnal Ilmiah Mahasiswa Universitas Surabaya, vol. 8, no. 1, 2019.
  5. Fauziah, "Hierarchical Cluster Analysis Industri Manufaktur Besar dan Sedang Berdasarkan Status Penanaman Modal. Studi Kasus: Industri Manufaktur Besar dan Sedang di Jawa Tengah Tahun 2015," in Skripsi Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam, Yogyakarta, Universitas Islam Indonesia, 2019.
  6. Febriyana, "Analisis K-Means dan K-Median pada Data Indikator Kemiskinan.," in Universitas Islam Negeri Syarif Hidayatullah, Jakarta, 2011.
  7. G. I. Nyoman, S. and N. N. Yuliarmi, "Analisis Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan di Nusa Tenggara dan Papua," Jurnal Ekonomi Pembangunan Universitas Udayana, vol. 9, no. 12, pp. 2762-2791, 2019.
  8. M. Abid, "Pengaruh Angka Melek Huruf Terhadap Kemiskinan di Provinsi Jawa Timur Periode 2008-2015," Jurnal Penelitian Ilmu Manajemen, vol. 1, no. 03, 2016.
  9. M. Bunkers, "Definition of Climate Regions in the Northern Plains Using an Objecting Cluster Modification Technique," j.Climate, pp. 130-146.
  10. N. Kaur, "K-Medoids Clustering Algorithm," International Journal of Computer Application and Technology, pp. 42-45, 2014.
  11. N. L. Anggraeni, "Teknik Clustering Dengan Algoritma K-Medoids untuk Menangani Strategi Promosi di Politeknik TEDC Bandung," Jurnal TEDC, vol. 12, no. 2, 2019.
  12. R. E. Walpole and R. H. Myers, Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Bandung: ITB, 1995.
  13. R. P. Silhouttes, "A Graphical Aid To The Interpretation And Validation Of ClusterAnalysis," Journal of computational and Applied Mathematics, pp. 20:53-65, 1987.
  14. S. N. Ika., "Analisis Kemiskinan di Provinsi Jawa Tengah Menggunakan Metode Regresi Spasial," in Skripsi Prodi Statistika, Yogyakarta, Universitas Islam Indonesia, 2015.
  15. S. Santoso, Menguasai Statistik Parametrik Konsep dan Aplikasi dengan SPSS, Jakarta: PT Elex Media Komputindo, 2015.
  16. S. Wahyuni and Y. A. Jatmiko, "Pengelompokan Kabupaten/Kota di Pulau Jawa Berdasarkan Faktor-Faktor Kemiskinan dengan Pendekatan Average Linkage Hierarchical Clustering," Jurnal Aplikasi Statistika dan Komputasi Statistika STIS, vol. 10, no. 1, 2018.
  17. T. Supriatna, "Birokrasi. Pemberdayaan. dan Pengentasan Kemiskinan," in Humaniora Utama Press, Bandung, 1997.
  18. Tiswati, "Analisis Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan di Indonesia," Jurnal Ekonomi Pembangunan, vol. 10, no. 1, Juni, 2012.
  19. Y. H. Christanto and G. Abdillah, "Penerapan Algoritma Partitioning Around Medoids (Pam) Clustering Untuk Melihat Gambaran Umum Kemampuan," Semin. Nas. Teknol. Inf. dan Komun, vol. 2015, no. sentika, pp. 444-448, 2015.