Main Article Content

Abstract

Poverty is an essential issue for every country, including Indonesia. Poverty can be caused by the scarcity of basic necessities or the difficulty of accessing education and employment. In 2019 Papua Province became the province with the highest poverty percentage at 27.53%. Seeing this, the district groupings formed in describing poverty conditions in Papua Province are based on similar characteristics using the variables Percentage of Poor Population, Gross Regional Domestic Product, Open Unemployment Rate, Life Expectancy, Literacy Rate, and Population Working in the Agricultural Sector using K-medoids clustering algorithm. The results of this study indicate that the optimal number of clusters to describe poverty conditions in Papua Province is 4 clusters with a variance of 0.012, where the first cluster consists of 10 districts, the second cluster consists of 5 districts, the third cluster consists of 12 districts, and the fourth cluster consists of 2 districts.

Keywords

clustering k-medoids Papua's poverty

Article Details

Author Biographies

Afdelia Novianti, Universitas Islam Indonesia, Indonesia

 

 

Irsyifa Mayzela Afnan, Universitas Islam Indonesia, Indonesia

 

 

Rafi Ilmi Badri Utama, Universitas Islam Indonesia, Indonesia

 

 

Edy Widodo, Universitas Islam Indonesia, Indonesia

 

 

How to Cite
Novianti, A., Afnan, I. M., Utama, R. I. B., & Widodo, E. (2021). Grouping of Districts Based on Poverty Factors in Papua Province Uses The K-Medoids Algorithm. Enthusiastic : International Journal of Applied Statistics and Data Science, 1(2), 94–102. https://doi.org/10.20885/enthusiastic.vol1.iss2.art6

References

Read More