Main Article Content

Abstract

According to the Ministry of Health of the Republic of Indonesia, key environmental health indicators include access to safe drinking water, adequate sanitation, and healthy living environments. As of 2023, only 10.21% of Indonesian households had access to safe sanitation, far from the government’s 2045 target of 70%. Indonesia’s ranking at 164th out of 180 countries in the 2022 environment performance index (EPI), with a score of 28.20 out of 100, further underscores the need for targeted interventions. This study aims to classify Indonesian provinces based on environmental health indicators, thereby supporting more effective policy prioritization. The k-medoids clustering algorithm was employed due to its robustness to outliers and flexibility in handling mixed data types, making it well-suited for this context. This study utilized data from 34 provinces in 2023, sourced from the Ministry of Health. These provinces were grouped into two clusters, with cluster 2 representing provinces with stronger environmental health performance. The clustering results were validated using the silhouette coefficient, confirming the quality of the groupings. Provinces in cluster 1 require greater policy attention to improve environmental health conditions. This study demonstrates the potential of robust medoids-based clustering for guiding targeted environmental health strategies in developing countries.

Keywords

SDG Environmental Health Silhouette Method Elbow Method K-Medoids Clustering

Article Details

Author Biography

Safwah Ayu Mardiyyah, Universitas Islam Indonesia

Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia

How to Cite
Agustin, W. S., Mardiyyah, S. A. ., Zahra , Q. S. A. ., Anggreany, A. N. ., & Widodo, E. . (2025). Clustering of Provinces in Indonesia Based on Environmental Health Indicators Using K-Medoids . Enthusiastic : International Journal of Applied Statistics and Data Science, 5(1), 88–100. https://doi.org/10.20885/enthusiastic.vol5.iss1.art9

References

  1. Kementerian Kesehatan Republik Indonesia, “Profil Kesehatan Indonesia Tahun 2019.” 2020. [Online]. Available: https://kemkes.go.id/id/profil-kesehatan-indonesia-2019
  2. N. Siddiqui, “India in the Environmental Performance Index,” Econ. Polit. Wkly., vol. 57, no. 25, Jun. 2022.
  3. F.E. Linder, “National Health Survey,” Science, vol. 127, no. 3309, pp. 1275–1279, May 1958, doi: 10.1126/science.127.3309.1275.
  4. Badan Pusat Statistik, “Persentase Rumah Tangga yang Masih Mempraktikkan Buang Air Besar Sembarangan (BABS) di Tempat Terbuka menurut Provinsi dan Klasifikasi Desa (Persen), 2023-2024,” 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MjE3NiMy/persentase-rumah-tangga-yang-masih-mempraktikkan-buang-air-besar-sembarangan-babs-di-tempat-terbuka-menurut-provinsi-dan-tipe-daerah.html
  5. Badan Pusat Statistik, “Persentase Rumah Tangga Menggunakan Layanan Sanitasi yang Dikelola Secara Aman Menurut Provinsi dan Tipe Daerah (Persen), 2023-2024,” 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MjE3OSMy/persentase-rumah-tangga-menggunakan-layanan-sanitasi-yang-dikelola-secara-aman-menurut-provinsi-dan-tipe-daerah--persen-.html
  6. Badan Pusat Statistik, “Persentase Rumah Tangga yang Memiliki Akses Terhadap Hunian yang Layak Menurut Klasifikasi Desa (Persen), 2021-2023,” 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTI0MiMy/persentase-rumah-tangga-yang-memiliki-akses-terhadap-hunian-yang-layak-menurut-klasifikasidesa.html
  7. U. Rahardja, Q. Aini, and M. Iqbal, “Analisis cluster dalam pengelompokan provinsi di indonesia berdasarkan variabel penyakit menular menggunakan metode complete linkage, average linkage dan ward,” InfoTekJar, J. Nas. Inform. Teknol. Jar., vol. 5, no. 1, pp. 40–43, Mar. 2020, doi: 10.30743/infotekjar.v5i1.2464
  8. H. Hikmah, F. Fardinah, L. Qadrini, and E. Tande, “Analisis klaster pengelompokan kecamatan di sulawesi barat berdasarkan indikator pendidikan,” Saintifik, vol. 8, no. 2, pp. 188–196, 2022, doi: 10.31605/saintifik.v8i2.383.
  9. Mukidin, “Clustering tingkat kesehatan lingkungan berdasarkan data penyehatan lingkungan pemukiman menggunakan metode fuzzy c – means (studi kasus: dinas kesehatan kab. cirebon),” J. Ilm. Indonesia, vol. 4, no. 2, pp. 22–31, 2019, doi: 10.36418/syntax-literate.v4i2.551
  10. A.P. Irfan, S. Aminah, S. Cokrowibowo, and N. Zulkarnaim, “Clustering wilayah berdasarkan data kesehatan lingkungan menggunakan fuzzy c-means,” J. Comput. Inf. Syst., vol. 1, no. 2, pp. 12–22, Apr. 2020, doi: 10.31605/jcis.v1i2.609.
  11. N.S. Belinda, I.R. HG, and H. Yozza, “Penerapan analisis cluster ensemble dengan metode rock untuk mengelompokkan provinsi di Indonesia berdasarkan indikator kesejahteraan rakyat,” J. Mat. UNAND, vol. 8, no. 2, pp. 108–119, Aug. 2019, doi: 10.25077/jmu.8.2.108-119.2019.
  12. M.R. Ikhsanudin and A.W. Wijayanto, “Perbandingan pengelompokkan provinsi di Indonesia menurut kualitas lingkungan hidup menggunakan metode hierarki dan partisi,” J. Sist. Teknol. Inf., vol. 12, no. 1, pp. 155–163, 2024, doi: 10.26418/justin.v12i1.71495.
  13. T.R. Mayasari, “Pengelompokkan provinsi berdasarkan variabel kesehatan lingkungan dan pengaruhnya terhadap kemiskinan di Indonesia tahun 2018,” J. Siger Mat., vol. 1, no. 1, pp. 24–30, Mar. 2020, doi: 10.23960/jsm.v1i1.2471.
  14. A. Fadlurohman and I.M. Nur, “Pengelompokan provinsi di Indonesia berdasarkan indikator perumahan dan kesehatan lingkungan menggunakan metode k-medoids,” in Pros. Semin. Nas. UNIMUS, 2023, pp. 1168–1180.
  15. W. Wijayanti, I.R. HG, and F. Yanuar, “Penggunaan metode fuzzy c-means untuk pengelompokan provinsi di Indonesia berdasarkan indikator kesehatan lingkungan,” J. Mat. UNAND, vol. 10, no. 1, pp. 129–136, Jan. 2021, doi: 10.25077/jmu.10.1.129-136.2021.
  16. M.S. Kudadiri, P. Silvianti, and F.M. Afendi, “Pengelompokan provinsi berdasarkan capaian indikator kesehatan lingkungan di Indonesia tahun 2020,” Xplore, J. Stat., vol. 11, no. 3, pp. 191–202, Sep. 2022, doi: 10.29244/xplore.v11i3.879.
  17. F.S. Pratiwi, S. Sudarno, and A. Rusgiyono, “Penerapan response based unit segmentation in partial least square (REBUS-PLS) untuk analisis dan pengelompokan wilayah (studi kasus: kesehatan lingkungan perumahan di Provinsi Jawa Tengah),” J. Gaussian, vol. 9, no. 3, pp. 364–375, Aug. 2020, doi: 10.14710/j.gauss.v9i3.28927.
  18. S.P. Dewi and M. Bin Othman, “Implementation of cluster k-means for the East Java environmental health areas grouping in 2017,” J. Biometrika Kependud., vol. 9, no. 1, pp. 1–9, Jun. 2020, doi: 10.20473/jbk.v9i1.2020.1-9.
  19. R.E. Sihombing, D. Rachmatin, and J.A. Dahlan, “Program aplikasi bahasa R untuk pengelompokan objek menggunakan metode k-medoids clustering,” J. EurekaMatika, vol. 7, no. 1, pp. 58–79, May 2019, doi: 10.17509/jem.v7i1.17888.
  20. Kementerian Kesehatan Republik Indonesia, “Profil Kesehatan Indonesia 2023,” 2024. [Online]. Available: https://kemkes.go.id/id/profil-kesehatan-indonesia-2023
  21. N.S. Ibrahim, “Analisis diskriminan linear robust dengan penduga minimum covariance determinant (Studi kasus: Indeks kerentanan pangan menurut kabupaten/kota di Indonesia tahun 2023),” Emerg. Stat. Data Sci. J., vol. 2, no. 2, pp. 264–279, 2024, doi: 10.20885/esds.vol2.iss.2.art20.
  22. I. Bin Mohamad and D. Usman, “Standardization and its effects on k-means clustering algorithm,” Res. J. Appl. Sci. Eng. Technol., vol. 6, no. 17, pp. 3299–3303, 2013, doi: 10.19026/rjaset.6.3638.
  23. F. Batool and C. Hennig, “Clustering with the average silhouette width,” Comput. Stat. Data Anal., vol. 158, Jun. 2021, doi: 10.1016/j.csda.2021.107190.
  24. P.A. Rizaldi, M. Hakimah, and T. Indriyani, “Penentuan jurusan siswa SMA menggunakan metode k-means ++,” in Semin. Nas. Sains Teknol. Terap, 2022, pp. 1–7.
  25. A.T. Rahman, W. Wiranto, and R. Anggrainingsih, “Coal trade data clustering using k-means (case study PT. Global Bangkit Utama),” ITSMART, J. Teknol. Inf., vol. 6, no. 1, pp. 24–31, Jun. 2017, doi: 10.20961/itsmart.v6i1.11296.
  26. E. Muningsih and S. Kiswati, “Sistem Aplikasi berbasis optimasi metode elbow untuk penentuan clustering pelanggan,” Joutica, vol. 3, no. 1, pp. 117–124, Apr. 2018, doi: 10.30736/jti.v3i1.196.
  27. B.S.A. Arif, A. Rusgiyono, and A. Hoyyi, “Pengelompokan provinsi-provinsi di Indonesia menggunakan metode ward (Studi kasus: Produksi tanaman pangan di Indonesia tahun 2018),” J. Gaussian, vol. 9, no. 1, pp. 112–121, Feb. 2020, doi: 10.14710/j.gauss.v9i1.27528.
  28. T.M. Kodinariya and P.R. Makwana, “Review on determining number of cluster in k-means clustering,” Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 1, no. 6, pp. 2321–7782, Nov. 2013.
  29. M. Afriana, S. Nugroho, and F. Pachri, “Penentuan awal keanggotaan analisis klaster non hirarki (K-means),” Undergraduate thesis, Math. Study Progr., Universitas Bengkulu, Bengkulu, Indonesia, 2023.
  30. A. Rofifah, R. Goenjantoro, and D. Yuniarti, “Perbandingan pengelompokan k-means dan k-medoids pada data potensi kebakaran hutan/lahan berdasarkan persebaran titik panas (Studi kasus: Data Titik panas di Indonesia pada 28 April 2018),” J. Eksponensial, vol. 10, no. 2, pp. 143–152, Nov. 2019.
  31. N. Sureja, B. Chawda, and A. Vasant, “An improved k-medoids clustering approach based on the crow search algorithm,” J. Comput. Math. Data Sci., vol. 3, Jul. 2021, 2022, doi: 10.1016/j.jcmds.2022.100034.
  32. [S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-medoid dalam pengklasteran mahasiswa pelamar beasiswa dengan cubic clustering criterion,” J. Nas. Teknol. Sist. Inf., vol. 3, no. 1, pp. 211–218, Apr. 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.
  33. C. Astria, A.P. Windarto, and D. Hartama, “Penerapan k-medoid pada rumah tangga yang memiliki sumber penerangan listrik PLN berdasarkan provinsi,” KOMIK (Konferensi Nas. Teknol. Inf. Komput.), vol. 3, no. 1, pp. 604–609, Oct. 2019, doi: 10.30865/komik.v3i1.1667.
  34. M. Muhajir, Modul Praktikum Statistika Multivariat Terapan. Yogyakarta, Indonesia: Universitas Islam Indonesia, 2021.